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Imagination is more important than knowledge.  
Knowledge is limited. Imagination encircles the world. 

--Albert Einstein 
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ABSTRACT 

Image acquisition devices, as well as image processing theory, algorithms, and 

hardware have advanced to the point that low Size-Weight-and-Power, real-time 

embedded imaging systems have become a reality.  To be practical in a fielded 

application, an image processing sub-system must be able to conduct multiple, often 

highly complex tasks, in real-time.  The design and construction of such systems have to 

address technical challenges, including real-time, low-latency processing and fixed-point 

algorithms in order to leverage lowest-power computing platforms. Further design 

complications stem from the reality that state-of-the-art image processing algorithms take 

very different forms, greatly complicating low-latency implementations.  This 

dissertation presents the design and preliminary implementation of an image processing 

sub-system that minimizes computational complexity and power consumption by 

eliminating repeated transformations between processing domains.  Specifically, this 

processing chain utilizes the LeGall 5/3 wavelet as the basis for applying multiple 

algorithms within a single domain. The wavelet processing chain is compared, in terms of 

image quality, computational cost, and power consumption, to a benchmark processing 

chain comprised of algorithms intended to produce high quality image results.  Image 

quality is assessed through a subject matter expert evaluation.  Computational cost is 

analyzed theoretically and empirically, and the power consumption is derived from the 

execution times and characteristics of the processing devices.  The results demonstrate 

significant promise, but several areas for additional work have been identified.  
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PUBLIC ABSTRACT 

Image acquisition devices, as well as image processing theory, algorithms, and 

hardware have advanced to the point that low Size-Weight-and-Power, real-time 

embedded imaging systems have become a reality.  The design and construction of such 

systems have to address many technical challenges, including the reality that low-latency 

implementations are complicated by state-of-the-art image processing algorithms taking 

very different forms.  This dissertation presents the design and preliminary 

implementation of an image processing sub-system that minimizes computational 

complexity and power consumption by eliminating repeated transformations between 

processing domains.  Specifically, this processing chain utilizes the LeGall 5/3 wavelet as 

the basis for applying multiple algorithms within a single domain. The wavelet 

processing chain is compared, in terms of image quality, computational cost, and power 

consumption, to a benchmark processing chain comprised of algorithms intended to 

produce high quality image results.  The results demonstrate significant promise, but 

several areas for additional work have been identified.  
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CHAPTER 1 INTRODUCTION 

Motivations 

Image acquisition devices, as well as image processing theory, algorithms, and 

hardware have advanced to the point that low Size-Weight-and-Power (SWAP), real-time 

embedded imaging systems have become a reality.  To be practical in a fielded 

application, an image processing sub-system must be able to conduct multiple, often 

highly complex tasks, in real-time, including many (or all) of the following: 

• Signal conditioning 

• Noise reduction 

• Registration and panoramic stitching of multiple sensor inputs 

• Super-resolution 

• Multi-focal fusion (also known as Hands-Free Focus) 

• Multi-spectral fusion 

• High dynamic range compression 

• Contrast enhancement  

• Compression for image\video storage or transmission 

The design and construction of such systems have to address technical challenges, 

including real-time, low-latency processing and fixed-point algorithms in order to 

leverage lowest-power computing platforms.   

Further design complications stem from the reality that the state-of-the-art 

algorithms for the above list of image processing tasks take very different forms, greatly 

complicating low-latency implementations.  For example, the optimal signal conditioning 

algorithm might be performed in the spatial domain, optimal noise removal might utilize 

a wavelet-based algorithm, and the optimal registration algorithm might be performed in 

the Fourier domain.  These transformations between different processing domains can 

easily begin to dominate the total computational cost of an image processing sub-system. 
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The objective of this work is to investigate the feasibility of performing most, or 

even all, of the image processing tasks for a given application in a single domain, namely 

the wavelet domain. Since their introduction in the mid-1980s, wavelets have become a 

standard tool for signal and image processing.  The multi-resolution aspect of wavelet 

processing provides a tradeoff between the spatial domain and the frequency (Fourier) 

domain.  Also, the linear computational complexity (i.e., faster than a Fast Fourier 

Transform (FFT)) and fixed-point implementations lend themselves to computation- and 

latency-sensitive applications.  This research is aimed at establishing a structured 

framework for the wavelet-based design of computationally efficient processing chains 

for digital imagery, quantifying the impact on computational cost and power 

consumption.   

Helmet-mounted vision systems, and more explicitly digital vision systems 

capable of both day and night operations, are the primary focus.  The manufacture of 

microchannel plates for image intensifier tubes used in night vision imaging systems is a 

complex, and often error-prone, process.  A system built upon digital technologies could 

provide a lower-cost solution with nearly equivalent, if not improved, capabilities.  Day- 

and night-capable digital vision systems still have not become a complete reality as the 

performance of the current low-light digital sensors is insufficient without the application 

of advanced image processing algorithms, and the required algorithms have been difficult 

to implement in a real-time manner.   

The methods used in this research are formulated for wider applicability such that, 

given a selection of algorithms capable of achieving a desired outcome, the framework 

will allow this wavelet approach to be tailored to a specific application.    

Contributions 

Specifically, this dissertation makes the following contributions to advance the 

state-of-the-art in efficient digital imagery processing chains: 
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• Develop and assess a wavelet-based framework for digital processing chains that 

enable complex, real-time applications such as helmet-mounted vision systems.  

Design of the processing chain includes a review and selection of an appropriate 

wavelet, as well as the development of an understanding of how the various 

techniques for processing wavelet coefficients impact the final image results.  The 

resulting image data was assessed qualitatively through a subjective analysis 

conducted by a set of subject matter experts (SMEs) with operational experience 

relevant to the target application or expertise in relevant areas of image 

processing. 

• Demonstrate the viability of the wavelet-based framework by characterizing the 

computational savings and associated power savings for processing digital 

imagery captured in both laboratory and operationally relevant environment.  

Digital vision systems are inherently a real-time application that often requires an 

already heavily burdened end user to carry the power source (e.g. dismounted 

soldier carrying pounds of batteries). The study benchmarks the wavelet-based 

processing chain against a baseline comprised of image processing algorithms 

aimed at producing high-quality image results.   

• Provide an understanding of how this framework can be tailored for wider 

applicability through guidelines for selecting and ordering algorithms in the 

processing chain in terms of the impact on image results, computational efficiency 

and power consumption.   

Organization 

Chapter 2 describes the general background of the application and problem space 

motivating this research. The chapter starts with a historical overview of helmet-mounted 

display (HMD) systems and night vision technology, predominantly from the military 

perspective. The chapter outlines the technical and non-technical challenges that continue 



www.manaraa.com

4 
 

to drive additional research in this area and concludes with a presentation of the wide 

variety of applications for helmet-mounted or head-worn devices. The intent of this 

chapter is to present the motivation for the broad applicability of this research beyond the 

target application context and to illustrate the importance of characterizing the impacts of 

algorithm selection and ordering.  

Chapter 3 reviews the technical background of wavelet transforms and the 

candidate processing algorithms. The first part of the chapter is intended to concisely 

present wavelet transforms. A brief overview of the continuous wavelet transform is 

provided; however, given the discrete nature of digital imagery, emphasis is placed on the 

discrete wavelet transform (DWT).  It includes a comparison of the real-valued and 

complex-valued wavelet transform.  The second part of Chapter 3 describes the candidate 

processing algorithms considered for inclusion in the image processing chain.  This 

review focuses primarily on wavelet-based approaches for each algorithm, but also 

includes recent non-wavelet techniques. 

Chapter 4 describes the processing framework design, including the 

documentation of several assumptions that influenced design decisions.  It describes the 

wavelet selected for the DWT-based processing chain and presents the algorithms 

selected for computationally efficient enhancement of digital imagery.  The chapter also 

presents a benchmark processing chain used to support the analysis of the DWT-based 

processing chain.  A brief rationale is provided for each algorithm in both processing 

chains.  The chapter concludes with the implementation details of the wavelet-based and 

benchmark processing chains. 

Chapter 5 presents the research results.   It provides a description of the 

approaches used to quantify the results in terms of image quality, computational cost and 

power consumption and summarizes the results of each of these analyses.  The chapter 

also provides a discussion of the relevance of these results to the state of the art in the 

field.  It concludes with a set of guidelines that should be considered when tailoring the 
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framework for applications beyond the target application in helmet-mounted vision 

systems. 

Chapter 6 summarizes the research presented in this dissertation.  It provides a 

brief recap of the primary contributions and identifies several areas that would benefit 

from additional research efforts.  The appendices provide supporting information not 

included in the main text.  Appendix A includes supplementary image data examined 

during the processing chain design to select and evaluate the results of individual 

algorithms.  Appendix B presents a short summary of a preliminary evaluation of an 

alternative wavelet for the processing chain.  
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CHAPTER 2 HISTORICAL BACKGROUND OF THE APPLICATION 

Given that the military has been at the forefront of the development and 

application of HMDs and night vision devices, and that the intended application of this 

research is in that domain, this historical overview presents primarily the military 

perspective.  This chapter also summarizes the technical and non-technical challenges 

that continue to drive additional research in this domain.  The wide varieties of 

applications for helmet-mounted or head-worn devices are presented; illustrating 

additional motivation for continued HMD-related research.  

Helmet-Mounted Displays 

Warfighters have worn protective head gear for thousands of years, and it has 

evolved to provide both protection and functionality. The integration of advanced 

electronic functionality into head-worn equipment can enhance soldier capabilities during 

the execution of tactical missions, providing enhanced situation awareness that varies 

widely depending on the tactical mission and operational environment. Just as there are 

many different types of tactical missions, there are different types of helmet systems used 

to best enhance the soldier’s effectiveness.  New systems are implemented to provide 

specific advanced capabilities or performance enhancement over existing systems, but 

new functionality always comes at a cost that requires an analysis of the tradeoffs 

between overall system performance and human sensory system performance.  

 

Figure 1: Scene-to-eye diagram for a digital system 
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Figure 1 shows the high-level flow, from the scene to the eye, for presenting information 

to the user of a typical digital system.  

Characterizing Helmet-Mounted Displays 

What is an HMD?  Melzer and Moffit [1] described an HMD as a system that 

minimally consists of “an image source and collimating optics in a head mount.”  An 

aviation-specific extension to this description was presented by Rash [2] to include a 

coupling system that utilized head and/or eye position and motion to slave one or more 

aircraft systems, most often a head-directed sensor. Stepping back from the aircraft-

centric characterization, Manning and Rash [3] provided a general method for describing 

HMD systems comprising the same basic building blocks, including: 

• A mounting platform that serves as an attachment point and stabilizer to maintain 

the alignment between the user’s eyes and the viewing optics 

• An image source that generates information imagery optically presented to the 

user.  Technological advances have enabled a wide range of potential image 

sources for the varying applications for HMDs. 

• Relay optics, consisting of various optical elements (such as lenses) and a beam 

splitter (combiner), which transfers the imagery to the eye(s).   

• A head tracker that enables the presentation of spatially-referenced symbology or 

outside information provided by a sensor or synthetic database.  A head tracker is 

optional if the HMD is used only to present status information to the user. 

With an understanding of the basic building blocks of an HMD, the methods for 

categorizing the systems can be discussed.  These categorizations reflect many of the 

design tradeoffs that must be considered during the design and development of an HMD. 

There are three primary methods for classifying HMDs: 1) the method by which the 

imagery is presented to the eye, 2) the mode by which symbology or imagery is 

presented, and 3) the optical design. 
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Shontz and Trumm [4] selected a categorization based on the method by which 

the imagery is presented to the eyes. The systems are characterized by presentation to one 

eye or both and by whether the display is see-through or occludes vision.  Examples 

include the one-eye, see-through type like the Integrated Helmet and Display Sighting 

System (IHADSS) [5][6] fielded on the AH-64 Apache helicopter and the two-eye, see-

through type such as the Thales TopOwl® [7]. Additional types include one-eye, occluded 

systems and two-eye, occluded configurations that encompass most night vision goggles 

(NVGs). 

The second classification is based upon the mode by which symbology or imagery 

is presented [8] and uses the terms monocular, biocular, and binocular.  Monocular 

refers to an HMD that presents information to a single eye, such as the previously 

mentioned IHADSS.  Biocular refers to a system that presents two images from a single 

sensor or multiple sensors where the images are identical.  Binocular refers to a system 

that presents two images from two sensors displaced in space. Binocular systems can 

provide perspective to the user and can overcome field of view (FoV) limitations via 

partial overlap of the images. Examples include the Helmet Integrated Display Sight 

System (HIDSS) [9] and the Aviator’s Night Vision Imaging System (ANVIS) [10]. 

The third approach characterizes HMDs by optical design. The most predominant 

type within this scheme uses reflective and refractive lenses to relay imagery with a final 

element called a “combiner” positioned in front of the eye [11].  Visor-projected designs 

[12] relay the imagery optically and project it onto the visor, where it is reflected into the 

user’s eye. This is a lower-weight approach that provides an improved center of mass 

(CoM), but it is highly susceptible to image degradation in high-vibration environments.  

Designs that use holographic optical elements [13] allow for low-weight and compact 

designs but are susceptible to humidity and temperature degrading the hologram. Wave-

guide technology, such as the BAE Q-Sight™ [14] or SBG Labs DigiLens® [15], uses 

holographic optics embedded within a visor or glasses to direct imagery to the eye. This 
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technology provides a low-weight approach that can be used with existing NVGs; 

however, it is new enough that the disadvantages are still being examined.  Another 

approach within this classification is to use lasers that scan the imagery directly onto the 

retina [16], offering reduced weight and improved CoM. Scanning complexity, 

susceptibility to high-vibration environments and safety concerns have severely limited 

the use of these types of designs. 

History of Helmet-Mounted Displays 

The official history of HMDs started during World War I between 1915 and 1917.  

Albert Pratt was awarded several patents for an “Integrated Helmet Mounted Aiming and 

Weapon Delivery System” for a marksman [17]. Since this time, various militaries across 

the world have pursued the development, application, and fielding of a variety of helmet-

mounted technologies.  In aircraft, the development of head-up displays (HUDs) began to 

mitigate the safety concerns associated with pilots having to look down at displays to 

obtain status information.  As beneficial as HUDs proved to be, their forward fixed 

position limited the usefulness in an environment where constant head motion is required.  

This factor provided the motivation for mounting a display on the head (or helmet). 

One of the first sighting HMDs ever fielded was the gimbaled gun, deployed in 

the U.S. Army AH-1G Huey Cobra [18].  The Navy introduced a system into the F-4J 

and F-4N Phantom fixed-wing jets coupled with radar and the AIM-9H Sidewinder 

missiles [19].  Both of these systems were fielded in the early 1970s. The first complete 

visually coupled system was introduced and fielded for operation use in the 1980s.  The 

IHADSS was fielded in the U.S. Army AH-64 Apache and has been used in both day and 

night missions for over three decades [20].  In 1994, the U.S. Air Force and U.S. Navy 

initiated the first joint office project developing the Joint Helmet Mounted Cueing 

Systems (JHMCS), a system that would enhance pilot situation awareness and provide 

head-out control of sensors and targeting systems.  The system has a modular design that 
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accommodates the use of an image intensified night vision module that can be 

reconfigured in flight [21]. Many more HMD programs have developed systems for 

fixed-wing, rotary wing, mounted and dismounted soldier, simulation and training, and 

medical applications. 

Outside the United States, two of the most significant systems were developed by 

the Russians and the Israelis. The Russians developed a helmet-mounted sight attached to 

the ZSh-5 series helmet to support the Vympet R-73/AA-11 Archer carried by the MiG-

29 Fulcrum and the Su-27 Flanker [22].  While this system had relatively limited 

functionality, it greatly improved the close combat capabilities [23] and was sold to air 

forces in India, Iraq, North Korea, Libya, Syria, Iran, Yugoslavia, and possibly Cuba 

[24]. The advantages this system provided during the Cold War resulted in a dramatic 

increase of HMD programs in the West.  The Israelis began development of the Display 

and Sight Helmet (DASH) series of HMDs in the 1970s.  The DASH 3, combined with 

the Python 4 had “fire and forget” capabilities and helmet-sight guidance.  This system is 

highly significant because it was one of the original “embedded” designs, with the 

complete optical and position sensing package built into a standard helmet form factor, 

and provided a significant basis for the JHMCS [25].  Several other systems have been 

developed in countries like France and the United Kingdom but have not had the same 

level of impact on continued research and development activities.  

The most recent, and most advanced, system is the Joint Strike Fighter (JSF) 

Helmet Mounted Display System (HMDS) developed by Rockwell Collins, Inc., shown 

in Figure 2 above.  The HMDS provides one of the first fully integrated day/night 

systems, capable of projecting night vision imagery directly onto the visor.  It is a 

biocular system that provides a virtual HUD, enabling the JSF to be the first fighter 

aircraft in over 50 years without a HUD [26].  Each F-35 helmet is custom-built for the 

pilot to ensure accurate alignment of helmet symbologies.   
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Figure 2: F-35 Gen III helmet1  

History of Night Vision Goggles 

Night vision imaging systems are light image intensification (I2) devices that 

amplify the ambient light, including visual light and near Infrared (IR). Specifically, the 

term Night Vision Goggles (NVGs) refers to an I2 device that is head-worn and most 

often a binocular design, affixed to a helmet in a clip-on fashion, as shown in Figure 3. 

 

Figure 3: Clip-on NVG [27] 
                                                 
1 Illustration by Peter Sucheski – January/February 2016 issue of Popular Science 
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Development of night vision devices began in the late 1930s for use by the 

German army and devices were tested in the early 1940s mounted on Panther tanks [28]. 

At the same time, the United States was developing infrared sighting devices [29].  The 

systems developed by both the Germans and the U.S. were “active” devices that utilized 

infrared illumination sources, which could be detected by opposing forces. This limited 

the utility of active night vision technology. 

The 1950s saw considerable research in night vision technologies [30] with a 

wide range of applications.  In the late 1950s, the U.S. Army began experimenting with 

T-6A infrared driving binoculars [10].  Around this same timeframe, a team at Bendix 

Research Laboratories was researching the first continuous-channel electron multiplier, a 

key step in the development of the microchannel plate [31]. The microchannel plate is 

one of the foundational elements of passive night vision upon which future night vision 

devices would be built.  

 

Figure 4: Typical NVIS I2 tube and optics2 

                                                 
2 The Avionics Handbook, Chapter 7 – Night Vision Goggles 
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Gen I I2 tubes were developed in the 1960s, but were too large for a head mount. 

It was in the late 1960s that Gen II I2 tubes were developed, enabling small, lightweight 

packaging suitable for head-mounted applications. The U.S. Army Night Vision and 

Electro-Optics Laboratory began using Gen II technology to develop NVGs for foot 

soldiers and experimenting with them in aviation during the late 1960s and early 1970s.  

The U.S. Air Force began to use SU-50 Electronic Binoculars in the 1970s, and the Army 

adopted Gen II AN/PVS-5, both for aviators.  In the late 1970s, ANVIS [10] 

development began, utilizing the first Gen III I2 tubes. 

The 1980s saw the introduction of two versions of ANVIS into military aviation, 

and a critical requirement for compatible lighting was identified.  The Army released 

Aeronautical Design Standard ASD-23 [32]. This was followed shortly by a tri-service 

specification, MIL-L-85762 [33] and the updated MIL-L-85762A that expanded the 

requirements to accommodate various types of night vision imaging systems [34][35].  A 

series of nighttime accidents involving NVGs led to a 1989 Congressional hearing [36] 

and a review of the safety and appropriateness of their use in aviation [27][37][38].  The 

results deemed that the older AN/PVS-5 NVGs were insufficient and that newer ANVIS 

were necessary. The 1990s and beyond saw an increased desire for the integration of 

HUD symbology with NVGs, spurring further research that ultimately led to the 

development of the AN/AVS-9, Panoramic NVGs, and Low Profile NVGs over the next 

several decades.  

In the mid-1990s, the Federal Aviation Administration released several studies on 

the use of NVGs in civil aviation [39]-[42]. The reports found that there were several key 

issues that must be addressed before NVGs could be successfully used: restriction to Gen 

III devices, modification of cockpit light, modification of interior light, modification of 

exterior lighting, development of appropriate training programs, and updates to 

regulations and standards.  Additional civil applications for NVGs include 

forestry\wildlife observation, law enforcement, EMS helicopters [43], and the luxury end 
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of the automotive industry [44] [45]. A very recent development generating significant 

interest for both military and civil applications is a prototype contact lens that enhances 

night vision.  University of Michigan scientists placed a thin strip of graphene that reacts 

to photons between layers of glass, making dark images appear brighter [46].  This 

technology has a long way to go before it will serve as an NVG replacement, but it will 

likely spur renewed night-vision-related research efforts.  

Challenges and Applications 

Though HMDs provide increased situational awareness to the wearer, several key 

technical and non-technical challenges still exist and continue to drive additional research 

in this domain.  HMDs that interfere with normal perceptual processes may degrade 

situation awareness, and if the system requires an unacceptable compromise, it will not 

be used.  Design and implementation are limited by physical constraints, safety concerns, 

and technical challenges.  Total system weight must be limited to avoid creating neck 

strain for the wearer.  Safety during pilot ejections limits weight and form-factor; 

occluded vision has limited the exploration of non-transparent displays in the cockpit and 

in vehicles; and cognitive tunneling and display clutter have driven several studies into 

symbology designs and placement.     

Many of the currently fielded HMDs and NVGs have limited instantaneous FoV, 

as shown in Figure 5.  The total binocular FoV (both eyes) for the human visual system is 

200° horizontal by 130° vertical [47], but in order to meet ejection safety, head-supported 

weight, and CoM requirements, a 40° horizontal by 30° vertical FoV is typical.  Increased 

FoV often comes at the expense of increased head-supported weight.   
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Figure 5: FoV of the human visual system3 and HMDs (shown in bold) 

Warfighters have reported depth perception as a major deficiency, although it is likely the 

result of inadequate motion perception cues caused by the limitations in peripheral vision. 

Analog I2 systems are further limited by their performance in weather conditions, such as 

dense fog. This provides significant motivation for digital imaging technology or the 

fusion of I2 imagery with imagery obtained in wavelengths that are not affected by these 

weather conditions, such as certain wavelengths in the IR spectrum.   It is important to 

note, however, that digital sensor technology by itself cannot yet provide the solution due 

to a sensor gap in extreme low-light conditions, driving the need for a coupled solution 

based on digital imaging technology and advanced image processing algorithms.  

Despite these challenges, the plethora of potential applications continues to drive 

a need for the “Ultimate Display” proposed in 1965 by Ivan Sutherland [48]. Sutherland 

proposed a system in which all-powerful computers could generate graphics of objects 

that would behave exactly, in all sensory modes, as their real-world counterparts.  

                                                 
3 Human visual system image from Accessibility for the Disabled – A Design 

Manual for a Barrier Free Environment 
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Realization of the ultimate system is still in the future, but an increasing number of the 

required technologies are coming to fruition.  Thus, the number of fielded systems 

remains relatively small due to cost, lagging technology, ergonomic shortcomings [49], a 

lack of applications that excite users, lack of awareness about the potential benefits, and a 

“visceral dislike” [50] of wearing a monitor on one’s head.  

The military originally led in the application of HMDs, primarily for navigation 

and situational awareness applications, including helmet-mounted sights, head-position 

sensing for line-of-sight designation and targeting when coupled with sensors and 

weapons, distributed aperture sensor systems for a “windowless cockpit,” and even an 

operator interface for remotely piloted vehicles.  Another highly popular application is 

simulation, training, and mission rehearsal [51] seeking to provide an alternative to large 

dome simulators, simulating and integrating entire environments within a single display. 

Other military applications include security monitoring and maintenance and inspection. 

Commercial and consumer applications have seen an explosion in recent years.  

Commercial applications use the basic concept of an HMD as a head-up mode of 

presenting information, but the cost/benefit and user acceptance in this area has been 

relatively slow to come.   The National Research Council of Canada flight-tested the use 

of HMDs for Instrument Approach Procedures [52].  NASA has been researching the use 

of head-worn displays in aviation for HUD equivalency in commercial and business jets 

[53], and several companies have begun to advertise future products, such as the Thales 

TopMax [54]. Aviation training applications, such as virtual-reality-based inspection 

[55], have been explored.   

Uses in the medical industry have increased, including viewing pre-operative 

images (ultrasound, x-ray, MRI) as if looking through the patient at the internal organs 

for surgical planning [56] and performing surgery through natural body openings or 

through small incisions with the surgeon viewing indirectly through a remotely operated 

camera.  In most medical applications, the imagery is viewed on a monitor at a distance, 
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but HMDs could allow increased hand-eye coordination, situation awareness and 

flexibility. An example system was demonstrated for this application, using computer- 

generated graphics integrated into HMD imagery [57]. Additional applications include 

molecular studies [58], virtual reality dynamic anatomy [59], airway management 

visualization and training for paramedics [60], and telepresence [61][62]. 

Consumer applications are even further burdened by the need to be extremely low 

cost, as users will not pay large sums of money to wear something that is uncomfortable.  

One of the most common consumer applications is personal gaming using head-worn 

displays.  A 2006 entry into this market was the Trimersion HMD, which was touted as 

the “next level of realism by offering greater immersion inside the game via an HMD” 

[63].  Since the entrance of the Oculus Rift VR headset [64] into the gaming market, 

there has been a veritable explosion of offerings.  Google Glass [65] has also taken 

consumer applications to new heights, allowing the user to access the internet and social 

media, navigate, take photos and video, play music, use “hands free” interfacing with 

phones (e.g. texting and calling), and access a multitude of applications [66]. 
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CHAPTER 3 TECHNICAL BACKGROUND 

This chapter provides a brief overview of wavelet transforms.  Given the discrete 

nature of digital imagery, a high-level discussion of the continuous wavelet transform is 

provided while a more detailed discussion of the DWT is presented.  The real-valued and 

complex-valued wavelet transforms are compared. A review of candidate algorithms for 

the proposed processing chain and current techniques is provided, with an emphasis on 

wavelet-based methods.  

Wavelet Transforms 

Historically, Fourier transforms have dominated signal processing utilizing 

sinusoidal basis functions to characterize a signal through its frequency components.  

These sinusoidal signals cover the entire temporal domain, meaning Fourier analysis is 

inherently a global transform that cannot analyze local or transient properties.  The 

windowed Fourier transform was developed to overcome this limitation; however, it 

utilizes windows of identical shape and size across the entire signal, and thus still cannot 

analyze transient structures. 

Unlike the Fourier transform, wavelet transforms are based on wave-like 

oscillations of finite duration, meaning they begin at zero, increase, and then decrease 

back to zero.  This characteristic enables analysis of both spatial and frequency 

information, rendering wavelets an incredibly powerful tool for signal processing.  It is 

well known that wavelets were first mentioned in an appendix to Alfréd Haar’s thesis, 

and the Haar sequence was further detailed shortly after in a 1910 paper [67]. There are 

several differing views on the further history of wavelet theory with foundations in 

mathematics, quantum physics, and digital signal processing.   

Within the field of digital signal processing, much of the foundation is attributed 

to the work of Stephane Mallat in the 1980s [68]. Ingrid Daubechies used Mallat’s work 

to construct her now famous group of orthonormal basis functions that are considered one 
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of the cornerstones of wavelet processing [69]. Since that time, the mathematics behind 

wavelet theory has been studied in significant detail, is largely considered complete, and 

has now entered the refinement stage of generalizations and extensions.  Further research 

lies in the application of wavelet processing to specific technical challenges in various 

domains. 

Continuous Wavelet Transform 

A wavelet function is defined as 𝜓𝜓 ∈ 𝐿𝐿2(ℝ), satisfying the conditions of zero 

mean and normalization, in the sense of the square norm, to one.  The mathematical 

representations of these conditions are ∫ 𝜓𝜓(𝑡𝑡)𝑑𝑑𝑡𝑡 = 0∞
−∞  and ∫ |𝜓𝜓(𝑡𝑡)|2𝑑𝑑𝑡𝑡 = 1∞

−∞ , 

respectively.  Wavelet-based processing has found success due to the ability to create a 

family of wavelets of differing time-widths from the “mother wavelet” function 𝜓𝜓(𝑡𝑡) 

through scaling and translation: 

 𝜓𝜓𝑎𝑎,𝑏𝑏(𝑡𝑡) = 1
�|𝑎𝑎|

𝜓𝜓�𝑡𝑡−𝑏𝑏
𝑎𝑎
�, Eq 1 

where a is the scaling parameter controlling the compression, b is the translation 

parameter controlling the time location of the wavelet, and 𝑎𝑎, 𝑏𝑏 ∈ ℝ with the exception 

that a ≠ 0.    

Given a continuous, one-dimensional (1D) signal, x(t), the continuous wavelet 

transform decomposes that signal using the scaled and translated wavelets by applying 

the following equation: 

 𝑊𝑊𝑊𝑊(𝑎𝑎, 𝑏𝑏) = 〈𝑊𝑊,𝜓𝜓𝑎𝑎,𝑏𝑏〉 = 1
�|𝑎𝑎|∫ 𝑊𝑊(𝑡𝑡)𝜓𝜓∗ �𝑡𝑡−𝑏𝑏

𝑎𝑎
� 𝑑𝑑𝑡𝑡∞

−∞ , Eq 2 

where * is the operation of complex conjugate.  For a wavelet transform to be invertible, 

it must satisfy the admissibility condition 0 < 𝐶𝐶𝜓𝜓 < ∞ with the admissibility constant 

defined as  

 𝐶𝐶𝜓𝜓 = 1
2 ∫

�𝜓𝜓� (𝜁𝜁)�2

|𝜁𝜁|
𝑑𝑑𝑑𝑑∞

−∞ , Eq 3 
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and 𝜓𝜓� is the Fourier transform of 𝜓𝜓. This allows for recovery of the original signal 

through 

 𝑊𝑊(𝑡𝑡) = ∫ ∫ 1
𝑎𝑎2
𝑊𝑊𝑊𝑊(𝑎𝑎, 𝑏𝑏) 1

�|𝑎𝑎|
𝜓𝜓� �𝑡𝑡−𝑏𝑏

𝑎𝑎
� 𝑑𝑑𝑏𝑏∞

−∞ 𝑑𝑑𝑎𝑎∞
0 , Eq 4 

with 𝜓𝜓�(𝑡𝑡) being the dual function of 𝜓𝜓(𝑡𝑡), sometimes defined as 𝜓𝜓�(𝑡𝑡) = 𝐶𝐶𝜓𝜓−1𝜓𝜓(𝑡𝑡), which 

satisfies  

 ∫ ∫ 1
𝑎𝑎3
𝜓𝜓 �𝑡𝑡1−𝑏𝑏

𝑎𝑎
�𝜓𝜓� �𝑡𝑡−𝑏𝑏

𝑎𝑎
� 𝑑𝑑𝑏𝑏∞

−∞ 𝑑𝑑𝑎𝑎∞
0 = 𝛿𝛿(𝑡𝑡 − 𝑡𝑡1). Eq 5 

Discrete Wavelet Transform 

While it is straightforward to mathematically describe the continuous wavelet 

transform, both the signal and wavelet functions must have closed forms, rendering it 

difficult or computationally impractical to apply.  Instead, the DWT is used, with discrete 

referring to discrete sets of dilation and translation factors and discrete sampling of the 

signal.  A commonly used method to discretize a and b was presented in literature [70], 

expressing the parameters as 𝑎𝑎 = 𝑎𝑎0
𝑗𝑗  and 𝑏𝑏 = 𝑘𝑘𝑏𝑏0𝑎𝑎0

𝑗𝑗. j is a value that affects the scaling 

of the wavelet transform, and k is a value that affects the translation of the wavelet.  It is 

important to note that the translation distance of a wavelet varies with respect to the 

scale; thus the continuous domain parameter b accounts for the scaling factor to complete 

the discretization.  These parameters are substituted into the wavelet function to obtain 

 𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡) = 𝑎𝑎0
−𝑗𝑗 2⁄ 𝜓𝜓�𝑎𝑎0

−𝑗𝑗𝑡𝑡 − 𝑘𝑘𝑏𝑏0�, Eq 6 

and the discrete version of the wavelet transform becomes 

 𝑑𝑑𝑗𝑗,𝑘𝑘 = 〈𝑊𝑊,𝜓𝜓𝑗𝑗,𝑘𝑘〉 = 𝑎𝑎0
−𝑗𝑗 2⁄ ∫ 𝑊𝑊(𝑡𝑡)𝜓𝜓�𝑎𝑎0

−𝑗𝑗𝑡𝑡 − 𝑘𝑘𝑏𝑏0�
∞
−∞ 𝑑𝑑𝑡𝑡. Eq 7 

Typically, the dyadic sampling method is used, setting 𝑎𝑎0 = 2 and 𝑏𝑏0 = 1, 

resulting in 𝑎𝑎 = 2𝑗𝑗  and 𝑏𝑏 = 𝑘𝑘2𝑗𝑗 .  Discrete child wavelets of the “mother wavelet” 𝜓𝜓(𝑡𝑡) 

are obtained through shifting and scaling by powers of two, and the wavelet function on 

an orthonormal basis is 
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 𝜓𝜓𝑗𝑗,𝑘𝑘(𝑊𝑊) = 2−𝑗𝑗 2⁄ 𝜓𝜓�2−𝑗𝑗𝑊𝑊 − 𝑘𝑘�, Eq 8 

and the orthonormal wavelet transform is given by 

 〈𝑊𝑊,𝜓𝜓𝑗𝑗,𝑘𝑘〉 = 2−𝑗𝑗 2⁄ ∫ 𝑊𝑊(𝑡𝑡)𝜓𝜓𝑗𝑗,𝑘𝑘�2−𝑗𝑗𝑡𝑡 − 𝑘𝑘�∞
−∞ 𝑑𝑑𝑡𝑡. Eq 9 

The formal approach for constructing these orthonormal bases is provided in Mallat’s 

work [68].  

The idea behind multi-resolution analysis is to use the limit of successive 

approximations of function x(t), each a smoother version of the function that corresponds 

to different resolutions. Once the initial resolution, J, has been selected, any 𝑊𝑊(𝑡𝑡) ∈

𝐿𝐿2(ℝ) can be expressed as 

 𝑊𝑊(𝑡𝑡) = ∑ 𝑐𝑐𝐽𝐽,𝑘𝑘𝜙𝜙𝐽𝐽,𝑘𝑘(𝑡𝑡)𝑘𝑘∈ℤ + ∑ ∑ 𝑑𝑑𝑗𝑗,𝑘𝑘𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡)𝑘𝑘∈ℤ
∞
𝑗𝑗=𝐽𝐽  Eq 10 

with detail or wavelet coefficients �𝑑𝑑𝑗𝑗,𝑘𝑘� and the approximation or scaling coefficients 

�𝑐𝑐𝑗𝑗,𝑘𝑘� defined using scaling function 𝜙𝜙𝑗𝑗,𝑘𝑘(∙) by  

 𝑐𝑐𝑗𝑗,𝑘𝑘 = 2−𝑗𝑗 2⁄ ∫ 𝑊𝑊(𝑡𝑡)𝜙𝜙𝑗𝑗,𝑘𝑘�2−𝑗𝑗𝑡𝑡 − 𝑘𝑘�∞
−∞ 𝑑𝑑𝑡𝑡. Eq 11 

It is important to note that a recursive relationship exists between the scaling 

coefficients and the wavelet coefficients at successive resolutions.  Using the dilation 

equation presented in [71], the relationship is expressed as 

 𝑐𝑐𝑗𝑗,𝑘𝑘 = ∑ 𝑔𝑔𝑙𝑙𝑐𝑐𝑗𝑗−1,2𝑘𝑘−𝑙𝑙𝑙𝑙∈ℤ   Eq 12 

 𝑑𝑑𝑗𝑗,𝑘𝑘 = ∑ ℎ𝑙𝑙𝑐𝑐𝑗𝑗−1,2𝑘𝑘−𝑙𝑙𝑙𝑙∈ℤ   Eq 13 

where 𝑔𝑔𝑙𝑙 are the coefficients of a low-pass filter and ℎ𝑙𝑙 are the coefficients of a high-pass 

filter. The equations denote the approximation and detail coefficients, respectively, at 

level j and illustrate how they can be obtained from the approximation coefficients at 

resolution j-1.  The outputs of the corresponding high- and low-pass filters are down-

sampled by a factor of two to generate the sequences of coefficients.  When iterating the 

opposite direction through the levels, the approximation coefficients at level j-1 are 

computed from the coefficients at level j through 
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 𝑐𝑐𝑗𝑗−1,𝑘𝑘 = ∑ 𝑔𝑔𝑙𝑙𝑐𝑐𝑗𝑗,2𝑘𝑘−𝑙𝑙𝑙𝑙∈ℤ + ∑ ℎ𝑙𝑙𝑑𝑑𝑗𝑗,2𝑘𝑘−𝑙𝑙𝑙𝑙∈ℤ , Eq 14 

and the output of the corresponding filters are up-sampled by inserting a zero between 

every two samples to generate the sequence.  This recursive relationship allows the DWT 

to be computed through a pyramid algorithm. 

Thus far, the discretized wavelet transform has still been discussed in the context 

of decomposing a continuous signal x(t).  For a discrete signal x[n], the DWT can be 

obtained by passing it through a set of filters and calculated through convolution.  The 

signal x[n] is passed through a low-pass filter with impulse response g[n], providing the 

approximation coefficients 

 𝑦𝑦[𝑛𝑛] = (𝑊𝑊 ∗ 𝑔𝑔)[𝑛𝑛] = ∑ 𝑊𝑊∞
𝑘𝑘=−∞ [𝑘𝑘]𝑔𝑔[𝑛𝑛 − 𝑘𝑘]. Eq 15 

The signal is simultaneously decomposed using a high-pass filter with impulse response 

h[n], to obtain the detail coefficients 

 𝑦𝑦[𝑛𝑛] = (𝑊𝑊 ∗ ℎ)[𝑛𝑛] = ∑ 𝑊𝑊∞
𝑘𝑘=−∞ [𝑘𝑘]ℎ[𝑛𝑛 − 𝑘𝑘]. Eq 16 

This process removes half the frequencies from the signal, allowing the results to be 

down-sampled according to Nyquist’s rule.  Thus, the output can be down-sampled by 2, 

to produce 

 𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙 = (𝑊𝑊 ∗ 𝑔𝑔) ↓ 2  Eq 17 

 𝑦𝑦ℎ𝑖𝑖𝑖𝑖ℎ = (𝑊𝑊 ∗ ℎ) ↓ 2. Eq 18 

g and h must be a related pair known as a quadrature mirror filter for this decomposition 

to be successful.  The decomposition process is often repeated to increase the resolution 

of the analysis.  The approximation coefficients serve as the input to subsequent levels of 

decomposition.  This filtering process is often represented using block diagrams such as 

those shown Figure 6. 
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(a) 

 

(b) 

Figure 6: (a) DWT Filter Block Diagram and (b) Multi-level Filter Bank 

Finally, for two-dimensional (2D) signals such as digital imagery, the DWT is 

most often applied in a separable fashion to each dimension.  Each 2D filter has separable 

horizontal and vertical components that are used to process the rows of the image first, 

followed by the columns.  Down-sampling is applied to both dimensions of the image. 

After a single level of decomposition, four different frequency sub-bands are obtained 

that represent the different combinations of the filtering operations with the low-pass and 

high-pass filters on the rows and columns. The four sub-bands are low-low (LL), low-

high (LH), high-low (HL), and high-high (HH) and represent the approximation, 

horizontal detail, vertical detail, and diagonal detail, respectively.  Multiple levels of 

decomposition can be applied until the desired resolution is reached for the intended 
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application.  The approximation coefficients in the LL sub-band from level j-1 serve as 

inputs to the filtering process of level j.  The filter bank representation of this process and 

resulting frequency bands are shown in Figure 7. 

 

Figure 7: Two-Level 2D DWT  

Real vs Complex 

The previous discussion focused on wavelet transforms with real-valued filters, 

which have been successfully used in many image processing applications; however, the 

constraint of being real-valued leaves these transforms subject to several shortcomings.  

First, with the exception of the Haar wavelet, real-valued orthogonal wavelet filters 

cannot be symmetric, and symmetry is an expected property of many applications.  Next, 

the real-valued transform is shift-variant, meaning that small shifts in an input signal will 

result in a dramatically different set of wavelet coefficients.  Shift-variance is the result of 

frequency aliasing caused by subsampling and dramatically complicates processing tasks 

such as image registration.  Increased frequency selectivity through the use of longer 

filter lengths can reduce the impact of this limitation, but this comes at the cost of 

increased computational complexity and decreased ability to analyze local properties of 

the signal.  Finally, implementation of the 2D transform through separable wavelets 
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suffers from poor directional selectivity for diagonal features.  The spectrum of the 2D 

separable wavelet is the convolution of the spectra of the 1D wavelets. Since the 1D 

wavelet is real-valued, its spectrum must be two-sided, and the spectrum of 2D wavelets 

must have support in all four quadrants.  This results in an inability to distinguish 

between 45° and -45° features. 

Real-valued biorthogonal wavelets can overcome the symmetry limitation but 

suffer from their own limitations. Thus, the complex wavelet transform (CWT) was 

developed to address the shortcomings of the real-valued wavelet transform [72].  A 

generalization of the standard wavelet transformation for complex numbers leads to the 

1D filter bank description of the CWT in Figure 8. Complex wavelets in this sense could 

support approximate shift invariance and better directional selectivity but could not be 

perfectly reconstructed.  Experimentation with complex factorizations that could be 

reconstructed came at the expense of shift invariance.  This requires a tradeoff depending 

on context and application that can be impractical for many uses. 

 

Figure 8: Two-Level "Single-tree" 1D CWT Filter Bank 

The concept of a “dual-tree” complex wavelet transform (DT-CWT) was 

introduced to overcome this limitation [73].  The DT-CWT of a 1D signal is computed by 
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running the signal through two filter banks, as shown in Figure 9, with the output of the 

first being treated as the real coefficients and the output of the second being treated as the 

imaginary coefficients.   The scaling and wavelet filters are designed such that each is a 

half-sample shift of the other and the infinitely iterated system creates complex wavelets 

that are Hilbert transforms of the other, meaning they are 90° out of phase with each 

other.  In fact, the wavelets can be designed in such a way that the real wavelet has even 

symmetry and the imaginary wavelet has odd symmetry. Employing two filter banks 

computes an output that is oversampled by a factor of two, resulting in coefficients that 

are less aliased and have increased shift-invariance. 

 

Figure 9: Three-Level DT-CWT Filter Bank 

Similar to the 2D real-valued wavelet, the 2D complex wavelet has a separable 

implementation.  Unlike the real-valued wavelet, however, the 2D dual-tree complex 

wavelets are not directly separable.  Instead, they are constructed through the 

combination of several separable wavelets.  This construction results in increased 
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directional selectivity.  The conventional 2D DWT has only three angularly selective sub-

bands of 0, 45, and 90 degrees.  The 2D DT-DWT has six angularly selective sub-bands 

of 15, 45, 75, 105, 135, and 165 degrees, as well as a spectrum structure that can reduce 

the frequency aliasing and related artifacts due to decimation.   These factors provide 

performance that is essentially equivalent to the steerable pyramid transform [74] used in 

many computer vision algorithms and has led to many DT-CWT-based image processing 

algorithms. 

Candidate Algorithms 

Figure 10 expands the Algorithms block of the high-level flow and depicts the 

basic digital processing chain applied to the target helmet-mounted vision system.  A 

review of the recent techniques, focused primarily on wavelet-based approaches, for each 

of the candidate algorithms is presented here.  This algorithmic overview will, when 

possible, be a narrative description of the processes and refrain from the use of 

mathematical equations.  For certain algorithms, such as fusion, the abundance of active 

research has produced significant volumes of available resources.  In these cases, more 

recent developments will be presented, and the reader will be referred to available 

literature reviews and surveys. 

 

Figure 10: Representative Processing Chain 
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Registration  

Registration is the process of establishing correspondence between, and 

geometrically aligning, multiple images of the same scene or object taken from differing 

viewpoints, at different times, or from different sensors.  It is a foundational step for 

many algorithms, including fusion, change detection, target tracking, and the well-known 

application of creating photo-mosaics.  For the intended application of this research, 

image registration is a key component of providing increased FoV for the end user 

through mosaicking multiple sensors and increased situational awareness in a variety of 

operational environments through multi-modal fusion.  

At a high level, registration algorithms can be divided into two classes: area-based 

(also known as pixel-based) and feature-based.  Fundamentally, these algorithms are 

comprised of four primary steps: 

• A feature detection process that locates salient or distinctive features in an image.  

A few examples of descriptive features are regions, edges, line intersections, or 

corners. 

• A feature matching step that establishes the relationship between features detected 

in the input imagery. The success of the matching step is highly dependent upon 

the type of features and the quality of the feature descriptors extracted during the 

detection step. 

• A transformation estimation step that calculates the type and parameters of the 

geometric mapping used to align the images.  This alignment is calculated directly 

from the feature correspondences determined in the previous step.  As a result of 

this dependence on the correspondence, the accuracy of feature detection and 

reliability of feature matching have a significant impact on the resulting 

transformation. 

• Image transformation and resampling utilizes the geometric mapping to project 

the images into a common reference frame and interpolates image values.  The 
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interpolation and resampling step is required to calculate the image data value due 

to the fact that the transformation often results in non-integer projected pixel 

locations. There are many interpolation techniques that require a tradeoff between 

computational complexity and the resulting image quality. 

Area-based methods do not directly detect features within the image, choosing instead to 

merge the detection and matching steps by using pixel windows of a pre-determined size 

to estimate the correspondence between the image frames. These approaches are highly 

sensitive to changes in intensity and tend to be unsuitable for multi-modal image 

registration.  

Many state-of-the-art image registration methods are based upon multi-resolution 

approaches using either wavelet transformations or pyramid decompositions.  In general, 

these techniques construct a series of sub-images of varying resolutions. Transform 

estimation begins at the coarsest scale and progresses to the finer scales, making 

corrections at each level.  Initial investigations into this hierarchical strategy were driven 

by a desire to reduce computational complexity.  These decompositions greatly decrease 

the search space at each level, reducing the computational load. Depending on the image 

content and type of motion being estimated, when combined with appropriate similarity 

measures, these techniques exhibit near top performance.   

Registration is one of the oldest, and most profusely researched, topics in the area 

of computer vision.  In fact, a 2003 survey of image registration methods stated, “in the 

last 10 years more than 1000 papers were published on the topic of image registration” 

[75], showing how prolific researchers are in this area.  Given the vast body of 

knowledge, numerous surveys and overviews have been written, and several are 

summarized in Table 1.  The reader is referred to these summaries for an understanding 

of currently available techniques.  However, it is important to note that this is not a 

comprehensive list of image registration techniques. 
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Table 1: Summary of image registration literature reviews 

Author(s) 
[Ref] 

Year Summary 

Brown [76] 1992 A survey of registration methods from three research areas: 

computer vision & pattern recognition, medical image 

analysis, and remotely sensed data processing.  Presents 

theory, methods, and characteristics of each approach to be 

considered when selecting or designing an algorithm for a 

particular application.  

Maintz and 

Viergever [77] 

1998 A survey (publications between 1993 and 1998, refers to 

prior reviews for methods pre-1993) focused on medical 

image registration techniques.  Presents nine criteria for 

classifying registration methods and reviews the methods 

within the context of these criteria. Presents research trends.   

Zitova and 

Flusser [75] 

2003 An attempt to provide a comprehensive review of image 

registration techniques regardless of area of application.  

Focuses primarily on techniques post-1992 and refers to 

Brown’s work for methods published pre-1992.  Classifies 

the methods according to area-based versus feature-based 

and according to four steps of the registration process. 

Summarizes the trends in research and a projected outlook 

for future topics. 

Szeliski [78] 2006 A comprehensive tutorial reviewing alignment and stitching 

algorithms.  Provides the theoretical foundation of basic 

motion models underlying the registration process, 

describes pixel-based and feature-based algorithms, and 

describes the approaches for blending the images together to 

create seamless mosaics.  Concludes with an overview of 

open research problems. 
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Table 1 Continued 

Author(s) 
[Ref] 

Year Summary 

Deshmukh and 

Bhosle [79] 

2011 An overview of the theoretical aspects of image registration 

and a survey of registration techniques. Discusses the types 

of spatial transformations that can be recovered and divides 

the approaches into pixel-based, feature-based, contour-

based, Mutual Information, frequency domain, wavelet-

based, and Hotelling transform-based algorithms. 

Summarizes a comparative study of six methods described 

in the paper and concludes that the wavelet-based 

approaches offer some of the better performance. 

Sotiras, 

Davatzikos, and 

Paragios [80] 

2013 An overview of techniques for deformable image 

registration in medical imaging, where the term deformable 

refers to the fact that the images are related through a 

spatially varying deformation model.  Algorithms in this 

class involve three components: a deformation model, an 

objective function, and an optimization method.  Previous 

works are discussed within the context of these three 

components.  

Mani and 

Arivazhagan 

[81] 

2013 Presents a review of publications related to medical image 

registration.  Intended as an introduction for researchers 

new to the field, an overview of researchers in the field, and 

a reference for researchers searching for literature on a 

specific application. Classifies the methods based on the 

same nine criteria proposed by Viergever and presents the 

publications within this context. 
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Noise Reduction 

Image noise can be defined as the random variation in intensity or color 

information in imagery and is often introduced during acquisition due to imperfections in 

image sensors and during transmission.  According to the literature [82], there are two 

typical sources of noise: 1) dark current noise that responds to changes in temperatures 

and 2) photon noise that depends on the number of electrons sampled during the imaging 

process and tends to be insensitive to temperature.  Noise in images degrades the visual 

quality and affects subsequent processing when utilizing the imagery for the intended 

tasks, thus the advent of denoising and restoration algorithms.   

Since their introduction, thousands of approaches have been developed for 

removing the various types of noise that can corrupt an image, and these algorithms have 

been the subject of numerous reviews. The selection of an existing algorithm or design of 

a new algorithm for reducing noise should carefully consider the type of noise most likely 

to affect the imagery to which the method is being applied.  Thus, for sake of 

completeness, noise processes are briefly reviewed, including sample images originally 

presented in the literature [81].  

• Additive noise is described as  

 𝑤𝑤(𝑊𝑊,𝑦𝑦) = 𝑠𝑠(𝑊𝑊,𝑦𝑦) + 𝑛𝑛(𝑊𝑊,𝑦𝑦) Eq 19 

where s(x,y) is the original signal, n(x,y) is the noise introduced into the signal, 

and w(x,y) is the corrupted image, with the index (x,y) representing the pixel 

location. 

• Multiplicative noise is described as 

 𝑤𝑤(𝑊𝑊,𝑦𝑦) = 𝑠𝑠(𝑊𝑊,𝑦𝑦) × 𝑛𝑛(𝑊𝑊, 𝑦𝑦) Eq 20 

where again s(x,y) is the original signal, n(x,y) is the noise introduced into the 

signal, and w(x,y) is the corrupted image, with the index (x,y) representing the 

pixel location. 
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• Salt and Pepper noise is a type of impulse noise, also referred to as intensity 

spikes, that is attributed to errors in data transmission, malfunctioning pixel 

elements in a sensor, faulty memory locations, or timing errors during 

digitization.  Salt and pepper noise has only two possible values, a and b, with the 

probability of each value occurring being less than 0.1. For example, in an 8-bit 

image, the values of the noise components are often 0 for pepper noise and 256 

for salt noise. 

 

Figure 11: Salt and pepper noise with variance of 0.05 

• Gaussian noise, as the name implies, has a Gaussian distribution and is evenly 

distributed across the image.  Each pixel value within the noise-corrupted image 

is the sum of the original signal and a random Gaussian distributed noise value.   

This type of noise has a bell-shaped probability distribution described by the 

function 

 𝐹𝐹(𝑔𝑔) =  1
√2𝜋𝜋𝜎𝜎2

𝑒𝑒−(𝑖𝑖−𝑚𝑚)2 2𝜎𝜎2⁄  Eq 21 

where g is the gray level, m is the mean of the function, and σ is the standard 

deviation.  
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Figure 12: Gaussian noise with mean = 0 and variance of 0.05 

• Speckle noise is a type of multiplicative noise that is common in coherent imaging 

systems, particularly several medical imaging modalities and Synthetic Aperture 

Radar, and is attributed to random interference with the returns.  This type of 

noise has a gamma distribution described by the function 

 𝐹𝐹(𝑔𝑔) =  𝑖𝑖𝛼𝛼−1

(𝛼𝛼−1)!𝑎𝑎𝛼𝛼
𝑒𝑒
−𝑔𝑔
𝑎𝑎  Eq 22 

where a2α is the variance and g is the gray level. 

 

Figure 13: Speckle noise with variance of 0.05 
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• Brownian noise is considered to be fractal or 1/f noise and has the mathematical 

model of fractional Brownian motion.  This is a non-stationary stochastic process 

with a normal distribution that is obtained by integrating white noise.  

 

Figure 14: Brownian noise 

The available literature reviews of denoising techniques take several forms.  Some 

[83]-[85] are broad surveys of available techniques.  Several overviews focus on specific 

classes of algorithms, such as these reviews of methods based on principal component 

analysis (PCA) [86], wavelet- and multi-resolution-based methods [87] [88], and several 

variations of median filter methods [89].  Others choose to focus on techniques that have 

proved to be well suited for removing specific types of noise, such as a review of 

techniques for removing impulse noise [90]. The reader is referred to Baudes et al. [91] 

for an in-depth review of algorithms available prior to 2005.  These reviews provide the 

foundation for the following discussion of denoising methods.  

Linear and nonlinear filtering techniques use convolution and the principle of a 

moving window.  A well-known approach is the mean filter, which reduces the local 

variation in intensities of adjacent pixels through smoothing.  Using a window of a 
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predetermined size (such as 3x3), the center pixel value is replaced with the average of 

the intensity values within the window. A simple variant of this technique is the Least 

Mean Square adaptive filter that varies a weighting scheme applied to the filter values by 

incorporating a local mean estimator. This approach better handles abrupt changes in 

intensity values.  Both approaches tend to over-smooth the image, resulting in blurring or 

the loss of edges. Anisotropic diffusion is a nonlinear filtering method typically used for 

removing Gaussian noise that derives its name from similarities to heat diffusion 

equations.  This technique uses partial differential equations to smooth the image while 

retaining awareness of flat regions and edge regions.  Several diffusion models have been 

proposed to control the level of smoothing within the various image regions [92] [93]. 

A special category of nonlinear filters that adhere to the moving window principle 

are median filters (MF).  The standard MF sorts the pixels within a window of 

predetermined size in numerical order and replaces the center pixel with the middle value 

of the sorted list.   The Weighted MF (WMF) and Adaptive Weighted MF (AWMF) have 

various weights associated with each filter element, with the AWMF allowing the 

weights to adapt according to the noise content.  The switching MF sought to overcome 

the smoothing and image degradation of typical MF designs by including a noise 

detection mechanism to identify “corrupt” pixels.  Pixels that are identified as “corrupt” 

are filtered, while “uncorrupt” pixels remain unmodified.  Directional MFs incorporate an 

impulse detector to identify noisy pixels and directional weighting based on gray level 

differences to allow robust denoising whether operating on an area within an image that 

is an edge, a flat region, or a line.  Finally, Adaptive MFs employ methods to determine 

the local noise content and adapt the size of the filter based on the level of corruption. 

Other techniques include total variation, bilateral filtering, the Field of Experts 

framework, and dictionary-based methods.  Total variation (TV) is based on the view that 

noisy images have a larger discrete gradient than noise-free images, meaning noisy 

images are grainy and noise-free images are smooth.  Denoising using TV calculates a 



www.manaraa.com

37 
 

solution to the unconstrained minimization problem with a given Lagrange multiplier 

subject to noise constraints. Bilateral filtering is a non-iterative approach that combines 

local image values non-linearly, blending the two approaches of domain filtering and 

range filtering.  The Field of Experts framework models image priors based on Markov 

random fields and denoise the image using an iterative gradient-descent approach on a 

negative log-likelihood term. Dictionary-based methods are patch-based algorithms that 

usually assume additive white Gaussian noise.  These approaches denoise the patches 

separately and insert them into the recovered image, averaging overlapping patches.  

There are numerous PCA-based techniques for image denoising.  A spatially 

adaptive PCA denoising method was developed to operate directly on the color filleting 

array, preserving color edges and details.  Another approach decomposes the image using 

adaptive principal components for denoising.  Several PCA-based dictionary approaches 

exist.  The first utilizes a hard threshold in image-specific orthogonal dictionaries that are 

learned from the image through PCA-based strategies.  A second method uses small 

dictionaries for patch-based denoising that are learned through an adaptation of PCA for 

Poisson noise.  PCA domain coefficient shrinkage with local pixel grouping preserves 

fine image structures while block-wise PCA computed through singular value 

decomposition (SVD) reduces the image root mean squared error. PCA has also been 

combined with the non-local means algorithm, using PCA to project image neighborhood 

vectors onto lower-dimensional subspace to improve computational performance.  

Wavelet-based techniques operate under the following framework: decompose the 

image using the wavelet transform, modify the wavelet coefficients, and reconstruct the 

denoised image using the inverse wavelet transform.  Most wavelet techniques modify 

the coefficients through a threshold operation.  Hard threshold and soft threshold methods 

compare the coefficients to a predetermined τ and are considered Universal Threshold 

operations since a single τ is applied to the wavelet coefficients.  VisuShrink [94] adheres 

to a hard threshold, but instead of using a predetermined threshold, τ is set proportional to 
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the standard deviation of the noise within the image. SureShrink [95] uses a level-

dependent soft threshold to minimize mean squared error. BayesShrink [96] uses a sub-

band-dependent soft threshold to minimize Bayesian risk.  

 Recent non-threshold-based wavelet approaches have used Weiner filters [97] or 

median filters [98] to modify the coefficients. Wavelet-based methods are still considered 

to be among the top performers for denoising.  Techniques are not limited to the DWT, 

but also include the CWT and extensions to related processes such as Contourlets, 

Curvelets, and Ridgelets.  

Fusion 

Data fusion is not a new concept and, in fact, dates back to the 1950s and 1960s.  

Broadly defined, image fusion is the process of combining multiple input images into a 

single output image that provides more information than is present in any of the inputs 

individually.  While fusion has typically been applied in the field of remote sensing for 

object recognition, classification, and change detection [99], the military applications 

have not gone unnoticed for both aviators [100] and ground troops.  Fusion has also seen 

a significant surge in applications in medical image processing, as can be seen in a recent 

survey of the state of the art [101].   

Fusion can take many forms, but the two that are of the most interest to the 

current research are multi-modal and multi-focal fusion.  Multi-modal fusion seeks to 

combine imagery obtained from differing sensor modalities, such as visible and IR, often 

to overcome the limitations or disadvantages of each sensor.  For example, visible 

cameras are relatively cheap and capable of producing high-quality images in nominal 

operating conditions, but the image quality degrades rapidly in dark, shadowed, foggy, 

cloudy, rainy, or smoke-filled environments.  IR sensors of various wavelengths can 

overcome many of these environmental conditions; thus, a pairing of the two through 

fusion has long been desired for applications such as ground soldier vision systems.  
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Multi-focal fusion seeks to overcome the limitations in the depth of focus of current 

imaging systems by generating an “all-in-focus” image from input images with differing 

focus depths.  This is a difficult problem due to the ambiguity in defining focus, 

especially in regions without texture, and removing artifacts that often appear along the 

edges of objects. The vast majority of the approaches in the following discussion apply to 

both multi-modal and multi-focal fusion algorithms. 

 
(a) 

 
(b) 

Figure 15: High-level flow for (a) spatial fusion and (b) transform-based fusion 

There are many different types of fusion algorithms, often divided into two 

categories: those operating directly with the imagery in the spatial domain and those that 

utilize a transformation to operate on an alternative domain representation of the imagery, 

such as the frequency domain.  The high-level processes for spatial fusion and transform-

based fusion algorithms are depicted in Figure 15 to illustrate the differences.  Spatial 

approaches are relatively simple and efficient; however, they are highly susceptible to 

registration errors and often distort spectral signals.  Multi-resolution approaches, 

introduced in the 1980s, seemed to reduce the problems associated with traditional spatial 

approaches, performing well spectrally.  In these techniques, a wavelet-based or pyramid-
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based transform is used as a framework for decomposing the imagery.  A fusion decision 

map is used to combine the data sets, and the inverse transform is applied to recover the 

fused image. The disadvantages of multi-resolution approaches include blocking artifacts 

and large memory requirements for pyramid representations, and the poor approximation 

of directional features and ringing artifacts for wavelet representations. Alternative 

wavelet transforms to the critically sampled DWT can be used to reduce the artifacts; 

however, this comes at the cost of increased memory requirements and computational 

complexity.   

The simplest spatial fusion rule is to average the input images, but this approach 

reduces the contrast of the unique features contributed by the source images.  More 

sophisticated spatial approaches to image fusion include PCA [102]-[104], intensity-hue-

saturation transformation (IHS) [103], and high-pass filtering.  IHS is not considered a 

transform-based approach because it is a “color space” transformation, not a domain 

transformation.  Two well-known multi-resolution approaches are the Laplacian and 

Gaussian pyramid [105], which convolve the image with a blurring matrix and down-

sample to form the next level of the pyramid. The Laplacian pyramid is formed through 

differencing each level of the pyramid and separating the image into the low- and high-

frequency components. Once the pyramids are formed, the process is reversed, and at 

each level the pyramids are combined by taking the maximum from the source images. 

Variants include the filter-subtract-decimate (FSD) pyramid [106], the ratio-of-low-pass 

(ROLP) pyramid [107], and the contrast pyramid [108]. Wavelet transformations offer a 

more compact way to fuse images and are based on the primary concept of injecting the 

detail information, usually present in the high-frequency data, from each source image 

into the final fused image. A significant body of literature exists on wavelet-based 

approaches [101], and more recent research can be found in the literature [109]-[112].  In 

2011, an Army Research Laboratory technical report compared 13 algorithms for multi-

modal fusion, including spatial approaches, pyramid approaches, and several currently 



www.manaraa.com

41 
 

available wavelet-based algorithms.  The report found that wavelet-based approaches 

were among the top performers, and that the CWT approach offered performance in the 

top three across a wide variety of experiments and environmental conditions [113].  

Multi-resolution approaches have been extended to use Ripplets [114], Curvelets [115], 

Contourlets [116], Slantlets [117], etc.   

Additional approaches that do not fall neatly into the spatial or transformation 

classification include graph-based methods [118][119] and the related region-based 

method [120] that formulates fusion as an optimization problem, a nearest neighbor 

approach that measures pixel sharpness using the neighbor distance computed from the 

oriented distance in differential geometry [121], an SVD method [122], and the 

increasingly popular self-adaptive neural network approaches [123]-[125].   As is 

common in image processing, each approach has advantages and disadvantages.  

Combining multiple techniques into so-called hybrid approaches has shown to produce 

promising results [126]-[128]. 

Dynamic Range Compression 

The human visual system can perceive five orders of magnitude of luminance at 

once and is capable of gradually adapting to over nine orders of magnitude [129].  

Advances in high dynamic range (HDR) imaging [130] can capture orders of magnitude 

in excess of those perceptible to the human eye.  Each pixel in an HDR image uses more 

bit depth than most displays are capable of rendering.  Thus, it is necessary to apply a 

process called dynamic range compression (DRC), which compresses the data into a 

smaller dynamic range by reducing the bit depth.  The goal of DRC is to perform this 

reduction in bits per channel while maintaining or, ideally, enhancing the visibility of the 

details.  Early approaches simply displayed a subset of the dynamic range of an image by 

truncating to a set of maximum and minimum values.  More recent approaches either 

seek to maximize the reproducibility of values based on the target display medium or 
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utilize models of how the human visual system perceives a scene to generate results that 

preserve realistic color and contrast.   

The term DRC has frequently been used interchangeably with two other terms in 

the field of image processing: contrast enhancement and tone mapping.  Contrast 

enhancement refers to the process that improves visual quality by enhancing the amount 

of color or gray differentiation between features in an image, allowing the features to be 

more visible by making the best use of the dynamic range of the display device.  It is 

important to note that the key difference is that contrast enhancement algorithms do not 

inherently include a reduction in the number of bits per channel used to represent the 

image data.  Tone mapping is the process of mapping one set of colors to another in order 

to approximate the appearance of HDR in a presentation medium that has a more limited 

dynamic range.  Tone mapping and DRC are considered by many researchers to refer to 

the same process, and are often used interchangeably in peer-reviewed publications.  The 

term DRC is inclusive of both terms from this point forward within this work. 

Literature on DRC has been the subject of several fairly extensive reviews in the 

late ‘90s and early 2000s.  The reader is referred to these sources [131]-[134] for an 

understanding of the research conducted prior to those dates.  A recent comparison of 

various techniques for contrast enhancement in color images is found in the literature 

[135].  Historically, contrast enhancement and DRC algorithms have been divided into 

two categories, spatial domain methods and transform-based methods; however, those 

lines have become increasingly blurred as newer algorithms leverage techniques from 

both methods to compensate for individual weaknesses.  The following review of recent 

techniques will include a third category described as hybrid methods. 

Spatial domain methods include global histogram modifications such as gamma 

and logarithmic curve mappings [136], contrast stretching, and histogram equalization 

(HE). HE is a very popular technique that generates a mapping that redistributes pixel 

values within the histogram to stretch the peaks and compress the troughs.  HE often 
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results in too much enhancement and contouring artifacts, driving the development of 

several HE-based techniques to address these issues. Lal and Chandra [137] provide an 

in-depth literature review of HE-based algorithms.  Other spatial domain algorithms are 

based on filtering techniques, such as a content-adaptive bilateral filtering technique that 

allows both spatial similarity and range similarity parameters to adapt to the content, 

minimizing the haloing artifacts introduced by many filters [138].   

A unique category of spatial domain methods are those that are biologically 

inspired.  Retinex (Retina and Cortex) theory was first presented [139] to model how the 

eye perceives light intensities.  The subsequent family of algorithms developed based on 

this model is applicable to contrast enhancement, DRC, shadow removal, and several 

medical imaging applications.  An overview of Retinex implementations can be found in 

the literature [140]. Retinex-based approaches tend to perform very well across a variety 

of lighting conditions but tend to come at a significant computational cost and often 

introduce halo artifacts.  An adaptive, multi-scale Retinex approach was developed to 

minimize halo artifacts [141].  Other biologically inspired techniques are based on the 

biological adaptation mechanism known as “shunting inhibition” and the center-surround 

network of cells [142] and a multi-scale luminance adaptation transform based on visual 

brightness functions [143]. 

Transform-based methods for DRC have been explored for several decades.  

Transform-based methods are well suited for these applications due to their ability to 

locate edge feature information.  Wavelet techniques allow simultaneous insight into 

spatial and frequency characteristics.  Many wavelet-based approaches exist [144], and, 

due to similarities in techniques, are often combined with noise reduction algorithms 

[145]-[150].  Other transform-based approaches include Curvelets [151], homomorphic 

filtering that operates in the frequency domain using the Fourier Transform [152], and an 

approach that uses linear and S-curve mappings on the low-frequency and high-frequency 

image components [153]. 
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HE methods are simple and fast but can increase background noise and induce 

contouring artifacts.  Biologically inspired methods have been widely accepted by the 

user community but are computationally costly.  Transform-based methods tend to 

introduce blocking or haloing artifacts.  To overcome these limitations, researchers have 

explored combinations of approaches and have seen promising results.  Wavelet 

techniques have been combined with stochastic resonance to enhance very dark images 

[154]. Wavelet techniques have also been combined with HE [155] for enhancing 

medical imagery, with the SVD [156], and with center-surround Retinex [157].  More 

recently, multiple spatial techniques, particularly global tone synthesis reproduction and 

local histogram projection with contrast stretching, were combined in a block-wise 

algorithm that has shown significant results [158].  Another hybrid approach that 

combined multiple spatial techniques blended a modified sigmoidal function with local 

Contrast Limited Adaptive Histogram Equalization (CLAHE) to enhance images using 

inter-pixel contextual information [137].  

Compression 

Storing digital imagery requires significant amounts of memory, and transmitting 

these images requires large transfer time and/or significant bandwidth.   Thus, data 

compression was developed to increase the practicality of storage and transmission of 

imagery by reducing the size of the image while preserving as much data as possible. The 

two most widely accepted approaches for image compression are standards created and 

released by the Joint Photographic Experts Group (JPEG), JPEG and JPEG2000.  At a 

high level, both compression algorithms are based upon the same functional blocks, 

depicted below in Figure 16, but differ in the details of the three process steps of the 

“coder.”  
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Figure 16: Compression Block Diagram 

The foundation of the original JPEG compression algorithm is the discrete cosine 

transform (DCT) [159].  After the image is tiled into 8x8 pixel blocks, the DCT is used to 

convert the 2D spatial representation of each block into a frequency representation.  Once 

the blocks have been transformed into the frequency domain, the data is quantized by 

reducing the high-frequency information. The value used in the quantization process 

controls the compression ratio.  Finally, the quantized coefficients are sequenced in a 

“zig-zag” order and entropy coded using either Huffman coding [160] or arithmetic 

coding [161].  Details of these processing steps for DCT-based coding can be found in 

Gregory Wallace’s overview of the JPEG standard [162]. 

The JPEG2000 coder is based upon the DWT and, similar to JPEG compression, 

works on image tiles.  JPEG2000 differs from JPEG in that the image is tiled into 

rectangular, non-overlapping blocks that are compressed independently as though they 

are separate images [163]. The JPEG2000 standard supports both a reversible integer-

based DWT and a nonreversible DWT.  Both wavelets come from the Cohen-

Daubechies-Feauveau (CDF) family of biorthogonal wavelets [164]; particularly, the 

integer-based CDF 5/3 wavelet, also known as the LeGall 5/3 wavelet [165], and the 

CDF 9/7 wavelet.  Once the blocks have been transformed, the wavelet coefficients are 

quantized to reduce the precision and bit depth required to represent the information.  

This is most often accomplished by dividing the magnitude of the coefficient by a scalar 

and rounding down.  Finally, the quantized data is packet partitioned [166] to obtain 
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code-blocks that are independently entropy coded using a context-dependent binary 

arithmetic coding of bit planes called Embedded Block Coding with Optimal Truncation 

(EBCOT) [167].   

The quantization step in both JPEG and JPEG2000 compression algorithms 

results in an inherently lossy process. However, JPEG2000 compression produces integer 

coefficients when utilizing the LeGall 5/3 wavelet, meaning the quantization step is 

essentially 1 and the image can be perfectly recovered.  Additionally, The DCT-based 

JPEG standard compresses the 8x8 pixel blocks individually without reference to 

adjacent blocks, resulting in the “blockiness” artifacts often associated with JPEG 

compressed images.  The shape of the wavelets used in JPEG2000 compression allows 

for better rendering and clearer edges within the image but can occasionally result in 

“ringing” artifacts around the periphery of an image [168]. These are just two of the 

numerous advantages provided by JPEG2000 compression. 

Summary 

This discussion has presented an overview of wavelet transforms and their 

applicability to low-SWAP, real-time embedded imaging systems. It reviewed the 

literature that suggests wavelet-based algorithms exist for the candidate algorithms in the 

desired processing chain and, in many cases, are among the top performers.  Based on 

these findings, this thesis presents a test of the hypothesis that a wavelet-based 

framework for digital processing chains can enable complex, real-time applications such 

as helmet-mounted vision systems.  The relevant information and conclusions from the 

existing body of literature are incorporated into the research design description that 

follows. 
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CHAPTER 4 FRAMEWORK DESIGN 

Image acquisition devices, as well as image processing theory, algorithms, and 

hardware have advanced to the point that low-SWAP, real-time embedded imaging 

systems have become a reality.  Much of the latency budget can be consumed during 

sensor integration and display scan. Thus, to be practical in a fielded application, an 

image processing sub-system must conduct multiple, often highly complex, tasks with 

minimal latency.  The design and construction of such systems has to address technical 

challenges, including real-time, low-latency processing and fixed-point algorithms in 

order to leverage lowest-power computing platforms.  Further design complications stem 

from the reality that the state-of-the-art algorithms often take very different forms. The 

transformation of image data between different processing domains can easily dominate 

the computational cost of an image processing sub-system.   

This chapter presents the research design.  It documents the assumptions that 

influenced design decisions and introduces the DWT-based processing chain designed for 

computationally efficient enhancement of digital imagery.  It describes the benchmark 

processing chain designed to produce high-quality imagery that is used to support a 

comparative analysis of the DWT-based processing chain.  The chapter concludes with 

the implementation details for both processing chains and the Graphical User Interface 

(GUI) that was developed to streamline implementation and analysis.  

Assumptions 

The candidate algorithm review focused on five potential algorithms: registration, 

noise reduction, fusion (multi-focus and multi-modal), DRC, and compression.  The 

scope of the processing chains implemented for this research, however, is limited to 

denoising, fusion, and DRC.  The driving application and entity utilize methods for image 

registration based on the mathematical characterization of the optics, camera geometry, 

and display system.  This calibration process is used for existing HMDs and tends to 
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result in highly accurate alignment, while imagery-based registration techniques tend to 

be computationally complex and suffer the effects of parallax.  Therefore, image 

registration algorithms are not included in either processing chain.  

Compression will also be excluded from the processing chain at this time.  

Compression is only desirable and required if the imagery were to be transmitted from 

the HMD to allow others to view the imagery.  Given the increasingly “net-centric” 

nature of today’s battlefield, this is not unlikely; however, the wavelet-based JPEG2000 

compression scheme is well known and documented.  Furthermore, JPEG2000 

compression would have equal contribution to the computation and power calculations 

for both processing frameworks, with the possible exception of an additional wavelet 

transform for the benchmark chain.  

Discussion of the various image processing algorithms has predominantly focused 

on algorithms that operate on spatial representations of image data and transformed 

representations, such as the frequency domain (or the spatial and frequency 

representation enabled by wavelet transforms).   Another important group of algorithms 

are those that operate across the temporal domain, meaning processing sequences of 

image data captured over time by utilizing information from prior frames.  Temporal 

processing is ideally suited for addressing artifacts that are not correlated across frames, 

and has shown some promise in areas such as denoising [169] [170].   However, temporal 

processing requires acquisition, storage, and retrieval of multiple frames of data, as well 

as the need to estimate and compensate for motion that occurs between frames.  These 

limitations render temporal processing algorithms unsuitable for the low-latency and low-

power requirements of the target application.  

DWT Processing Chain 

The first objective of this research was to develop and assess a wavelet-based 

framework for digital processing chains that enable complex, real-time applications such 
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as helmet-mounted vision systems.  Since their introduction in the mid-1980s, wavelets 

have become a standard tool for signal and image processing.  The multi-resolution 

aspect of wavelet processing provides a tradeoff between the spatial domain and the 

frequency domain.  Also, the linear computational complexity and fixed-point 

implementations lend themselves to computation- and latency-sensitive applications, 

such as those explored in this work.  

Wavelet Selection 

The advantages and shortcomings of real-valued wavelet transforms, as well as 

complex-valued wavelet transforms were presented in Chapter 3. Despite the increased 

shift invariance, increased directional selectivity, and decreased likelihood of aliasing 

artifacts, the CWT was eliminated from considerations.  The computational complexity 

and an inability to process the data “in-place” (meaning additional data storage and data 

access during algorithm execution) outweighed the benefits for the target application.  

Several real-valued wavelets were considered when designing the processing 

chain, including the CDF 9/7 and LeGall 5/3 wavelets supported by the JPEG2000 

compression standard.  After consideration that included several factors, such as 

computational complexity and a desire for fixed-point implementation, the LeGall 5/3 

was selected.     

Table 2: LeGall 5/3 Filter Coefficients 

k Analysis Filter Coefficients Synthesis Filter Coefficients 

Low-pass High-pass Low-pass High-pass 

0 6/8 1 1 6/8 

±1 2/8 -1/2 1/2 -2/8 

±2 -1/8   -1/8 
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This is the real-valued wavelet that allows for lossless JPEG2000 compression, 

and is a biorthogonal wavelet constructed of symmetric filters.  The coefficients of these 

synthesis and analysis filters used to perform the convolution-based implementation of 

the transform are presented in Table 2. The analysis filters have low-pass filter with 

length 5 and high-pass filter with length 3, hence the name of the wavelet.  For the 

inverse transform, filter lengths are reversed. 

The LeGall 5/3 wavelet lends itself to highly efficient implementation through a 

lifting scheme.  The basic idea of lifting is to use a complementary pair of filters that 

allow for perfect reconstruction, and has shown the ability to provide significant 

reduction in memory and computational complexity.  Details of the lifting scheme can be 

found in the literature [171] [172], but it has been demonstrated that the output of the 

lifting approach is identical to the output of the convolution-based implementation.   

Due to the relatively simple structure of the LeGall 5/3 filters, the lifting 

implementation of the filter banks is quite straightforward.  The decomposition of the 

signal, performed using the analysis filter bank, is implemented utilizing the following 

equations: 

 𝑦𝑦[2𝑛𝑛 + 1] = 𝑊𝑊[2𝑛𝑛 + 1] − �𝑥𝑥[2𝑛𝑛]+𝑥𝑥[2𝑛𝑛+2]
2

� Eq 23 

 𝑦𝑦[2𝑛𝑛] = 𝑊𝑊[2n] + �𝑦𝑦[2𝑛𝑛−1]+𝑦𝑦[2𝑛𝑛+1]+2
4

� Eq 24 

where x[n] represents the input signal, y[n] represents the output (the resulting wavelet 

coefficients), and ⌊∙⌋ is the floor operator.   

The floor operation is effectively a quantization step, but it is interesting to note 

that, despite this quantization, the inverse transform is able to perfectly recover the 

original signal.   As previously described in Chapter 3, the equations are applied to the 

rows in the image data first, followed by the columns.  Subsequent levels of 

decomposition are applied to the resulting approximation coefficients.   
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The reconstruction of the signal is performed via the inverse transform using the 

synthesis filter bank.  The inverse transform is implemented with the following 

equations: 

 𝑊𝑊[2𝑛𝑛] = 𝑦𝑦[2n] − �𝑦𝑦[2𝑛𝑛−1]+𝑦𝑦[2𝑛𝑛+1]+2
4

� Eq 25 

 𝑊𝑊[2𝑛𝑛 + 1] = 𝑦𝑦[2𝑛𝑛 + 1] + �𝑥𝑥[2𝑛𝑛]+𝑥𝑥[2𝑛𝑛+2]
2

� Eq 26 

where y[n] again represents the wavelet coefficients, x[n] represents the recovered image 

data, and ⌊∙⌋ is again the floor operator.  

Algorithm Selection 

The DWT-based processing chain performs denoising through an adaptive soft 

thresholding algorithm, fusion using an area-based fusion technique, and dynamic range 

compression using a self-designed method.  These algorithms were selected, or designed, 

based on two key factors aimed at minimizing computational complexity and power 

consumption.  The algorithms utilize simple mathematical operations that do not 

decompose into a computationally intractable problem, and processing can be accelerated 

through parallelizable implementations. 

Photon noise tends to be the dominant type of noise in visual spectrum and 

infrared cameras [173]-[175], especially in low light conditions where the number of 

available electrons is inherently limited.  This poor illumination during image acquisition 

results in uncorrelated noise with a Gaussian distribution.  This Gaussian white noise will 

be common in the target operating environment, and there are several approaches that 

have demonstrated success in removing this type of noise. Denoising in the wavelet 

domain is based upon the premise that noise is spread throughout the small-magnitude 

coefficients while the image information is contained in the large-magnitude coefficients.    

As described in Chapter 3, many wavelet-based algorithms are based upon some 

sort of threshold, such as the hard and soft threshold operators.  The hard threshold 
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algorithm takes a “keep or kill” approach, setting the coefficients with absolute value 

below the threshold to zero and leaving all coefficients above the threshold unmodified.  

The hard threshold approach creates a discontinuity that can be clearly seen in Figure 17.  

This discontinuity can lead to haloing or blocking artifacts within the resulting denoised 

image.  

 

Figure 17: Example hard threshold operator for τ = 3 

Alternatively, the soft threshold algorithm, shown in Figure 18, “shrinks” the 

wavelet coefficients with absolute values above a threshold and sets those coefficients 

below the threshold to zero, effectively removing the noise component.  There is a 

significant probability that subsequent processing steps would further emphasize artifacts 

induced by applying a hard threshold.  Therefore, the soft threshold approach was 

selected for inclusion in the DWT-based processing framework. 
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Figure 18: Example soft threshold operators for τ = 3 

The soft threshold operator is mathematically defined as 

 𝐷𝐷(𝑦𝑦[𝑛𝑛], 𝜏𝜏) = �
𝑦𝑦[𝑛𝑛] + 𝜏𝜏, 𝑦𝑦[𝑛𝑛] < −𝜏𝜏

0, |𝑦𝑦[𝑛𝑛]| ≤ 𝜏𝜏
𝑦𝑦[𝑛𝑛] − 𝜏𝜏, 𝜏𝜏 < 𝑦𝑦[𝑛𝑛]

 , Eq 27 

where y[n] represents the nth wavelet coefficient in the image and τ is the threshold value.  

Choosing the appropriate threshold value is one of the most challenging aspects of 

performing image denoising in the wavelet domain.  Many algorithms apply a single 

global threshold to the entire set of wavelet coefficients, while others apply thresholds 

that adapt to the coefficients in varying manners.  The selected algorithm uses a sub-band 

adaptive threshold modified from the literature [95][176].  This adaptive threshold is  

 τ = 𝛿𝛿𝑚𝑚𝑎𝑎𝑚𝑚�2 𝑙𝑙𝑙𝑙𝑔𝑔𝑁𝑁           Eq 28 

where N is the number of pixels in the sub-band (i.e., HH) and δmad is the median 

absolute deviation.  δmad is calculated using the following equation: 
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 𝛿𝛿𝑚𝑚𝑎𝑎𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑎𝑎𝑛𝑛|𝐶𝐶𝑖𝑖|
0.6745

 Eq 29 

where Ci can be the LH, HL, or HH coefficients for the ith-level of decomposition.  The 

scalar value in the denominator rescales the numerator to be a suitable estimate for the 

standard deviation for Gaussian white noise. 

Visible spectrum sensors, including I2 devices, have known limitations in 

operating conditions such as fog and smoke, while certain IR wavelengths can provide 

usable information in these operating conditions.  Additionally, current generations of I2 

NVGs require the user to manually focus the scene.  Soldiers have indicated that in the 

field they routinely forgo adjusting the focus, choosing instead to select a “good enough” 

focus depth and leave it unaltered for the duration of the operation.  Auto-focus 

techniques are inadequate, as there is no way to identify the important focus depth, and 

they are unlikely to handle the constantly changing scene content introduced by frequent 

motion.  Hence, it is straightforward to understand the significant role that multi-modal 

and multi-focus fusion play in the target application.   

Similar to denoising, fusion in the wavelet domain is based on the premise that 

large-magnitude coefficients correspond to more acute changes in intensity and thus the 

salient feature data in the image.  It is logical to assume that taking the per-pixel 

coefficient with the largest absolute value provides the best fusion result.  However, 

features within an image are typically larger than a single pixel, and as a result, area-

based fusion rules often produce better-quality images.  An analysis confirmed this 

conclusion. The simple maximum selection shown in Figure 19 produces significant 

detail in the form of readable text at many depths in the image, but being highly sensitive 

to noise has introduced haloing artifacts.  The area-based algorithm selected for the 

processing chain, shown in Figure 20, minimizes the artifacts but does not produce as 

much detail in the text portion of the images4. 
                                                 
4 Images collected by Mr. Steven Koenck, Pr Systems Engineer at Rockwell 

Collins, Inc. 
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Figure 19: Visible haloing artifacts in maximum selection multi-focal fusion 

 

Figure 20: Area-based multi-focal fusion algorithm minimizes artifacts but has lost detail 



www.manaraa.com

56 
 

The fusion algorithm used in the processing chain is a modified version of the 

area-based algorithm presented in the literature [177] and is suitable for both multi-modal 

and multi-focal fusion applications.  The fusion rule in the processing chain can be 

described as 

 𝑦𝑦[𝑛𝑛]𝑓𝑓 = � 𝑦𝑦𝚤𝚤[𝑛𝑛]������,          𝑖𝑖𝑖𝑖 y[𝑛𝑛] ∈ 𝐿𝐿𝐿𝐿 sub-band 
𝑚𝑚𝑎𝑎𝑊𝑊𝐴𝐴(𝑦𝑦𝑖𝑖[𝑛𝑛], 𝑞𝑞𝑖𝑖[𝑛𝑛]),               𝑙𝑙𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒

  , Eq 30 

where 𝑦𝑦𝑖𝑖[𝑛𝑛] represents the nth coefficient from image i and 𝑞𝑞𝑖𝑖[𝑛𝑛] represents the quality 

measure associated with the nth coefficient from image i. The rule means that the 

approximation coefficients from all input images are averaged, while the detail 

coefficients subject to a modified maximum operator, maxA, that utilizes an quality 

measure function q(·) to ensure that as much of the dominant features within the local 

area are included in the fused image.  

The quality measure function for an individual image initializes each element of 

𝑞𝑞[𝑛𝑛] with the absolute value of the detail coefficients y[𝑛𝑛] of the LH, HL, and HH sub-

bands from all passes of the DWT.  For each image setting, 

 𝑞𝑞[𝑛𝑛] =  |𝑦𝑦[𝑛𝑛]|. Eq 31 

Then, for each subsequent pass of the DWT, from highest to lowest resolution, the 

calculation loops through the elements of the quality measure array (using proper bounds 

to ensure that only the entries associated with the appropriate pass are computed) and 

updates the values using equation 

  𝑞𝑞 �𝑟𝑟
2
∙ 𝑤𝑤 + 𝑐𝑐

2
� = 𝑞𝑞 �𝑟𝑟

2
∙ 𝑤𝑤 + 𝑐𝑐

2
� + |𝑦𝑦[𝑒𝑒 ∙ 𝑤𝑤 + 𝑐𝑐]| . Eq 32 

r and c are the indices used (with proper bounds) to iterate through the image height and 

width values, and w is the width of the image.  Indices are integers; thus, the quality 

measure for a lower-resolution pass is an aggregate of the absolute value of the 

coefficients from the corresponding 2x2 window from the higher-resolution pass before 

it.  Once the quality measure has been calculated through all J passes of the DWT, it is 
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normalized based on the number of passes, and the values from the lower-resolution 

passes are propagated into the higher-resolution passes using   

 𝑞𝑞[𝑒𝑒 ∙ 𝑤𝑤 + 𝑐𝑐] =
(𝑞𝑞[𝑟𝑟∙𝑙𝑙+𝑐𝑐]+𝑞𝑞[𝑟𝑟2∙𝑙𝑙+

𝑐𝑐
2])

2
 . Eq 33 

r and c are again the indices used (with proper bounds to ensure only the entries 

associated with the appropriate pass) to iterate through the image height and width 

values, and w is the width of the image.  The quality measure for each element of a 2x2 

window of the current pass will use a single quality measure value from the lower-

resolution pass behind it during this propagation.  

This process is further described within the context of the coefficients from three 

passes of the DWT depicted in Figure 21.  The quality measure array is initialized with 

the absolute value of the coefficients shown for each pass.  Then, for pass p = 2, the 

quality measure for the gray coefficient aggregates the absolute value of the 2x2 window 

of gray coefficients shown in pass p = 1.  The single entry shown in pass p = 3 

aggregates the four coefficients shown in pass p = 2.  This recursive relationship equates 

the quality measure for the single coefficient shown in pass p = 3 to an aggregate of the 

detail coefficients from the four elements in pass p = 2 and the sixteen elements in pass  

p = 1.   

The quality measures are then normalized, in the context of this example, by 

dividing by three.  Propagating the values back up through the passes means that each 

quality measure value associated with the 4 elements in pass p = 2 becomes the average 

of the element’s value and the quality measure value associated with the element from 

pass p = 3. Likewise, each quality measure value associated with the 4 gray elements 

shown in pass p = 1 becomes the average of the element’s value and the quality measure 

value of the gray element from pass p = 2.  



www.manaraa.com

58 
 

 

 

Figure 21: Two views of how corresponding pixels between passes are used for the 
area-based activity measure computation 

The quality function is computed in this manner for all i images. Once this 

process is complete, maxA selects the detail coefficient 𝑦𝑦𝑖𝑖[𝑛𝑛] from the image that has the 

largest quality measure value 𝑞𝑞𝑖𝑖[𝑛𝑛] associated with it.  This method results in the 

selection of spatially coherent blocks of coefficients, because the aggregation and 

propagation process often leads to the selection of blocks of four or sixteen coefficients 

mostly from a single image.  Sample results for multi-focus fusion of three source images 

obtained from this modified algorithm are shown in Figure  A.1 located in Appendix A.  

DRC algorithms seek to overcome the physical limitations of display hardware 

and present images in a manner similar to how the scene is perceived by a human while 

preserving, or enhancing, important details used to comprehend the scene content.  DRC 

is an essential processing step for this research as source imagery in the target 

application, as well as broader applications, may be obtained by imagers that natively 

capture data using different bit-depth representations.  These techniques are also 

necessary for the intended application because the imaging system will encounter 

operational environments with extremes in dynamic range that cannot be displayed 

without losing critical detail, such as the example shown in Figure 22. 
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(a) 

 
(b) 

Figure 22: Sample scene with (a) original 16-bit representation and (b) 8-bit 
representation after a simple DRC approach that shows hidden detail 



www.manaraa.com

60 
 

Global DRC algorithms that apply an identical mapping to every pixel, or an 

adaptive mapping based on global image content, are computationally efficient and often 

simple to implement.  Local algorithms that may apply different mappings to a pixel 

based on regional image characteristics tend to produce higher-quality images and better 

compression, but at a significant increase in computational cost.  Low-latency 

applications, including the target application, require a fast algorithm that produces 

realistic images across a wide variety of environments, demanding a tradeoff between 

computational efficiency and image quality.  While many state-of-the-art wavelet-based 

algorithms exist [144] and yield high-quality results, they utilize additional combinations 

of computationally expensive processing steps such as bilateral filtering, DCT, SVD, and 

HE.  Consequently, this processing chain includes a self-designed DRC algorithm.   

The dynamic range of an image is controlled by the approximation coefficients 

(the LL sub-band) in the DWT representation, while the high-frequency sub-bands (LH, 

HL, and HH) contain the edge and feature information.  Therefore, manipulating the 

approximation coefficients will compress the dynamic range and enhance contrast within 

the image.  Detail within the final image can then be enhanced by manipulating the high-

frequency sub-bands.  These concepts were used to design a wavelet-based DRC 

algorithm that utilized only simplistic mathematical operations. 

The non-zero approximation coefficients are manipulated using the piecewise 

linear function defined in Equation 34.  

 𝑦𝑦𝑐𝑐[𝑛𝑛] =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝛽𝛽2 + (𝑦𝑦[𝑛𝑛]−𝛼𝛼2)∙(𝛽𝛽3−𝛽𝛽2)+(𝛽𝛽3−𝛽𝛽2−1)

𝑚𝑚𝑎𝑎𝑥𝑥(|𝐶𝐶𝐿𝐿𝐿𝐿|)−𝛼𝛼2
, 𝛼𝛼2 < 𝑦𝑦[𝑛𝑛]

𝛽𝛽1 + (𝑦𝑦[𝑛𝑛]−𝛼𝛼1)∙(𝛽𝛽2−𝛽𝛽1)+(𝛽𝛽2−𝛽𝛽1−1)
𝛼𝛼2−𝛼𝛼1

, 𝛼𝛼1 < 𝑦𝑦[𝑛𝑛] ≤ 𝛼𝛼2
𝛽𝛽1𝑦𝑦[𝑛𝑛]+(𝛽𝛽1−1)

𝛼𝛼1
,     0 < 𝑦𝑦[𝑛𝑛] ≤ 𝛼𝛼1

𝛽𝛽1𝑦𝑦[𝑛𝑛]−(𝛽𝛽1−1)
𝛼𝛼1

, −𝛼𝛼1 ≤ 𝑦𝑦[𝑛𝑛] < 0

−𝛽𝛽1 + (𝑦𝑦[𝑛𝑛]+𝛼𝛼1)∙(𝛽𝛽2−𝛽𝛽1)−(𝛽𝛽2−𝛽𝛽1−1)
𝛼𝛼2−𝛼𝛼1

, −𝛼𝛼2 ≤ 𝑦𝑦[𝑛𝑛] < −𝛼𝛼1

−𝛽𝛽2 + (𝑦𝑦[𝑛𝑛]+𝛼𝛼2)∙(𝛽𝛽3−𝛽𝛽2)−(𝛽𝛽3−𝛽𝛽2−1)
𝑚𝑚𝑎𝑎𝑥𝑥(|𝐶𝐶𝐿𝐿𝐿𝐿|)−𝛼𝛼2

,     𝑦𝑦[𝑛𝑛] < −𝛼𝛼2

  Eq 34 
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In this equation y[n] are the input coefficients; α1 and α2 are breakpoint values in the 

segments representing the domain (input) of approximation coefficients; max(|CLL|) is the 

largest absolute value approximation coefficient; and β1, β2, and β3 are breakpoint values 

in the segments representing the range (output) of approximation coefficients.  

Identifying the optimal value for the breakpoints, α and β, presents a significant 

challenge, as it has empirically shown to be scene dependent.  An example plot of the 

first 10,000 positive values of this piecewise linear function is shown in Figure 23. 

 

Figure 23: Example plot of the resulting yc[n] for yLL[n] = [1:10,000] when α1 = 256, α2 
= 2048, max(|CLL|) = 30196, β1 = 8, β2 = 16, and β3 = 256 

This piecewise linear function is applied only to the initial approximation coefficients at 

the lowest resolution level of the DWT.  It is not recursively applied throughout the 

reconstruction.  It is also important to note that this function preserves the sign of the 
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coefficient values.  In the context of real numbers, a change in sign equates to a change in 

phase and will have significant impacts when reconstructing the image.  

The high-frequency sub-bands are subject to a simple scaling factor, μ, which is 

computed using the following equation: 

 𝜇𝜇 = 𝑚𝑚𝑎𝑎𝑥𝑥(�𝐶𝐶ℎ𝑓𝑓�)
2(𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ−1) Eq 35 

where 𝑚𝑚𝑎𝑎𝑊𝑊(�𝐶𝐶ℎ𝑓𝑓�) is the maximum absolute value coefficient present in the detail 

coefficients at all resolutions and bitdepth is the desired bit-depth representation of the 

image.  The power of the denominator is bitdepth-1 because the positive and negative 

values each represent half of the range, and 2(bitdepth)÷2 is equivalent to 2(bitdepth-1).   An 

adaptive scalar based on the maximum absolute value coefficient per resolution level was 

also explored, but did not produce significant improvements in the resulting images.  An 

example of this is shown in Figure A.2 in Appendix A.  In certain examples it over-

smoothed the image, blurring details instead of enhancing them.  

Benchmark Processing Chain 

The initial implementation of the benchmark processing chain performs denoising 

via the MF algorithm, the same area-based fusion technique from the wavelet processing 

chain, and a logarithmic tone mapping DRC algorithm.  The algorithms were selected 

based on several factors, including: applicability to the imagery that would be captured 

by a day- and night-capable helmet-mounted vision system, frequency of use within the 

image processing community, and the results of SME assessments of visual quality 

produced by individual algorithms.  Computational complexity was a consideration for 

this processing chain; however, it was secondary to algorithms that result in high visual 

quality to emphasize the tradeoffs that may be required in designing such systems.  

Spatial filters can be effective in reducing additive white Gaussian noise; 

however, most are smoothing techniques that, while effective at removing noise, tend to 
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blur edge details.  The MF is frequently used in many applications because, in the correct 

conditions, it will preserve the edge details during denoising.  When using a fixed 

window size, the median filter is effective at removing small to moderate levels of noise 

[178].  It is also effective in removing speckle noise and salt and pepper noise [179], but 

exhibits poorer performance for images with high levels of noise.   While the algorithm 

can have significant computation cost if implemented by sorting every entry in the 

window for every possible window in the image, it can be accelerated using selection 

algorithms or histogram medians [180]. 

The standard MF sorts pixels within a predetermined window size in numerical 

order and replaces the center pixel with the median (middle) value of the sorted list.  The 

implementation of the algorithm for this research filters the image using 25 elements in a 

5x5 window, except on the boundaries of the image.  The outer edges of the image (the 

first and last rows and columns) are not filtered at all.  The second and second to last 

rows and columns are filtered using 9 elements in a 3x3 window.  These filter sizes are 

shown in Figure 24.   

 

 (a) 

 

(b) 

Figure 24: (a) 3x3 pixel and (b) 5x5 pixel filter masks of the median filter algorithm 
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The fusion algorithm selected for this processing chain is the same area-based 

fusion technique utilized in the wavelet processing chain.  Therefore, it will not be 

described again here.  

Several experiments [130], [181], [182] evaluated and compared DRC algorithms 

in terms of visual preference, realism, similarity of the compressed image to the HDR 

image, visibility, and reproduction of detail.  Due to the varying results of these analyses, 

a list of five algorithms representing a diverse list of global, local, biologically based, and 

filtering approaches were selected for a subjective analysis by SMEs.  The algorithms 

were selected based on factors including computational efficiency, retention and 

reproduction of detail, strength of compression, availability of software to facilitate a 

rapid evaluation, and performance in the referenced experiments.    

The five algorithms included histogram adjustment [129], adaptive logarithmic 

mapping [136], gradient-domain compression [183], fast bilateral filtering [184], and a 

biologically based compression algorithm developed by Teledyne Scientific [185].  The 

SME assessment performed a pair-wise comparison of images produces by each test 

algorithm applied to three different scenes (see Figure A.3 - Figure A.5 in Appendix A) 

containing various characteristics desired by the target application.  The algorithm 

selected for the processing chain [136] consistently performed in the top two across the 

scenes presented during the SME evaluation. Furthermore, it performed the best at 

reproducing detail in dark regions [181] and was second for similarity to the HDR scene 

[130].   The Drago algorithm [136] is a logarithmic tone mapping that uses a bias power 

function  

 𝑏𝑏𝑖𝑖𝑎𝑎𝑠𝑠𝑏𝑏(𝑡𝑡) = 𝑡𝑡
log(𝑏𝑏)
log(0.5) Eq 36 

to perform adaptive adjustment of the logarithmic base depending on each pixel’s 

radiance.  The original algorithm design experimentally established a default bias 

parameter value of b = 0.85; however, values ranging from 0.7 to 0.9 also produced 
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perceptually high-quality images.  The tone mapping step computes the resulting display 

value for each image pixel through the following equation: 

 𝐿𝐿𝑚𝑚 = 𝐿𝐿𝑏𝑏𝑑𝑑𝑎𝑎𝑑𝑑∙0.01
log(𝐿𝐿𝑤𝑤𝑑𝑑𝑎𝑎𝑑𝑑+1)

∙ log(𝐿𝐿𝑤𝑤+1)

log�2+�� 𝐿𝐿𝑤𝑤
𝐿𝐿𝑤𝑤𝑑𝑑𝑎𝑎𝑑𝑑

�
log(𝑏𝑏)
log(0.5)�∙8�

 Eq 37 

where 𝐿𝐿𝑙𝑙 is the luminance value for the pixel, 𝐿𝐿𝑙𝑙𝑚𝑚𝑎𝑎𝑥𝑥 is the maximum luminance value 

of the scene, and 𝐿𝐿𝑚𝑚𝑚𝑚𝑎𝑎𝑥𝑥 is the maximum luminance capability of the display.  The default 

value for 𝐿𝐿𝑚𝑚𝑚𝑚𝑎𝑎𝑥𝑥 is 100 cd/m2, a common reference value for CRT displays.  𝐿𝐿𝑙𝑙 and 

𝐿𝐿𝑙𝑙𝑚𝑚𝑎𝑎𝑥𝑥 are pre-scaled by 𝐿𝐿𝑙𝑙𝑎𝑎, a “world adaptation luminance” that scales the scene 

luminance to the output image brightness.  𝐿𝐿𝑙𝑙𝑎𝑎 is computed using the logarithmic 

average of the luminance values in the entire scene.  If a bias parameter other than the 

default is used, 𝐿𝐿𝑙𝑙𝑎𝑎 is further adjusted via the equation 

 𝐿𝐿𝑙𝑙𝑎𝑎 = 𝐿𝐿𝑙𝑙𝑎𝑎
(1 + 𝑏𝑏 − 0.85)5�  Eq 38 

to maintain a constant brightness impression and realism while enhancing contrast. 

Subsequent to tone mapping, a transfer function similar to gamma correction is 

applied to compensate for display non-linearity.  Traditional gamma functions exhibit a 

steep slope near the origin, resulting in drastic mapping of darker pixels that reduces 

contrast and detail in shadowed areas.  The transfer function applied in the Drago 

algorithm uses a simple linear fit near the origin and frequently used γ values to enhance 

contrast and details in dark areas.  The function is:  

 𝐸𝐸′ = �
𝑠𝑠𝑙𝑙𝑙𝑙𝑠𝑠𝑒𝑒 ∙ 𝐿𝐿, 𝐿𝐿 ≤ 𝑠𝑠𝑡𝑡𝑎𝑎𝑒𝑒𝑡𝑡

1.099𝐿𝐿
0.9
𝛾𝛾 − 0.099, 𝐿𝐿 > 𝑠𝑠𝑡𝑡𝑎𝑎𝑒𝑒𝑡𝑡

 Eq 39 

Where start is the abscissa at the point of tangency, and slope is the slope of the line 

passing the origin and tangent to the curve.  For this research, the parameters start = 

0.018, slope = 4.5, and γ = 2 were selected, equating E’ to the international standard 

ITU-R BT.709 transfer function. 
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Implementation 

Framework Implementation 

The processing chains have been designed to support images with varying bit-

depth representations.  Each input image is first checked for bit-depth, and then, if 

required, the pixel values are scaled to convert the image to a 16-bit representation.  

Limiting the implementation to 8-bit images would be representative of the data collected 

by many of the sensors utilized in the target application, but it was highly desirable to 

design and implement the frameworks in a manner such that they can easily 

accommodate a range of imaging modalities and bit-depth representations.  The current 

implementations support only grayscale image data.  It would also be simple to extend 

the frameworks to accommodate color images by applying known color-scale-to-intensity 

conversions, but the current implementation does not include this functionality at this 

time.   

Many of the algorithms were initially prototyped in MATLAB to support an early 

analysis of the feasibility of the DWT framework concept.  This approach supported 

rapid prototyping by leveraging the powerful ability of MATLAB to manipulate matrices 

and display images. Subsequently, the processing chains were re-implemented in the C++ 

coding language to support the analysis of computational cost and power consumption.  

The algorithms were implemented, tested, and analyzed using Ubutu within a Virtual 

Machine on an Apple MacBook Pro® with a 2.8 GigaHertz (GHz) processor and 4 GB of 

RAM.  It is important to note that this means the analysis is based on the processing 

chains running on the Central Processing Unit (CPU) of the machine, as opposed to a 

Graphics Processing Unit (GPU) designed to rapidly and efficiently manipulate images.  

The processing flow for each of the frameworks is presented in the following 

figures.  The DWT-based framework is presented in Figure 25.  Figure 26 depicts the 

benchmark processing framework. 
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Figure 25: Algorithm flow for DWT-based processing chain 
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Figure 26: Algorithm flow for benchmark processing chain 
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Graphical User Interface  

A GUI was developed in Qt to streamline the implementation and analysis of the 

processing chain.  Qt is a cross-platform application and GUI development framework 

that can be used for desktop, embedded, and mobile development [188].  While the 

framework is written in C++, it can also be used in other programming languages through 

language bindings.   Standard C++ source files are generated by a preprocessor that 

extends the language with a variety of features to simplify event handling.  This 

capability allows the framework, and the applications or libraries that use it, to be 

compiled by any standard compliant C++ compiler.  The framework supports a multitude 

of platforms, including Windows, Linux, OS X, Android, iOS, and VxWorks. It is 

available under GPL 3.0, LGPL 3.0, and LGPL 2.1 free software licenses, with certain 

modules only available under a GPL license.  Qt is also available under commercial 

licenses that enable development of proprietary applications without restrictions on 

licensing. 

Qt was developed by Haavard Nord and Eirik Chambe-Eng.  It became publicly 

available in May 1995 and grew rapidly from there.  The conceptual foundation for the 

framework was born from a discussion regarding the need for an object-oriented display 

system.  Nord and Chambe-Eng were developing a database application that had a 

requirement for running with a GUI on Unix, Macintosh, and Windows platforms.  Qt 

0.90 was uploaded to sunsite.unc.edu on May 20, 1995, with subsequent versions (1.2 

and 1.3) in 1997.   Qt 2.0 was released in 1999 with a new open source license.  In 2000 

Qt/Embedded expanded the framework for embedded Linux devices, and Qtopia 

provided the application framework for mobile devices. Qt 3.0 came on the scene in 

2001, providing over 40 new classes that improved Unicode support, new text viewing 

and editing capabilities, and a regular expression class. Qt 4.0, released in 2005, added 

significant new functionality including new template containers, Unicode text viewing 

and editing, and a 2D painting framework, as well as smaller enhancements to previously 
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available features.  Qt 5 was released in 2012, providing substantial advances in speed 

and ease of use through hardware-accelerated graphics, QML, and JavaScript.  

Two versions of a GUI were implemented in Qt 4.  The initial GUI 

implementation, shown in Figure 27, allowed the user to quickly load the source images 

to be processed and select either the DWT-based framework or the benchmark 

framework.  The source images were displayed, and the resulting image was displayed 

upon completion of the selected framework.  The GUI also presented the overall 

computational time required to execute the processing chain. While it did not display the 

processing time for each individual algorithm, this data was stored during execution to 

support the computational cost analyses.  

 

Figure 27: Preliminary Qt 4 GUI 
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Later in this research effort, the preliminary implementation of the GUI was 

expanded to support exploration of additional alternatives in the processing chains.  The 

expanded GUI, shown in Figure 28, provides several enhanced capabilities.  After 

preliminary analysis of the image results identified the DRC algorithm as the source of 

unacceptable artifacts, additional scaling-based DRC approaches were implemented, and 

the GUI supports exploration of various “breakpoints” in the scaling curves.  It also 

includes an alternative wavelet processing chain based on the DT-CWT and 

enhancements that streamline loading source imagery.  

 

Figure 28: Expanded Qt 4 GUI 
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CHAPTER 5 RESULTS, ANALYSIS AND DISCUSSION 

The importance of this research for the given application lies in the hypothesis 

that performing most, if not all, of the processing steps in a single domain will provide a 

significant reduction in computational latency and power consumption.  It is well 

understood within the image processing community that image transforms are 

computationally expensive, and the wavelet-based processing chain described in the 

previous chapter minimizes the number of transforms required to enhance the imagery.  It 

eliminates the need to repeatedly transform the imagery in and out of multiple domains, 

leading to a significant reduction in computational cost and power consumption.  Testing 

this hypothesis requires the quantification of the resulting image quality and 

characterization of the savings in computational cost and power consumption.   

This chapter presents the results of this research effort.  It provides the image 

results for each of the processing chains and the analysis of quality, computational cost, 

and power consumption.  Each of the approaches utilized for quantifying the results are 

briefly described before introducing and discussing the results of the analyses.  Finally, 

the chapter concludes with a discussion of the implications that the algorithm selection 

and ordering has with respect to output image quality and the computational cost and 

power consumption.  This discussion presents a set of guidelines to consider when 

implementing the processing chain for a specific application. 

Image Quality Analysis 

The increasing application of digital imaging technologies to areas such as 

medical imaging, surveillance systems, and military vision systems has emphasized the 

importance of accurate image quality assessment (IQA).  This need is well described by a 

series of questions presented in the literature [186]: 

“…no matter what image/video processing problems we 
are working on, the same issues repeatedly come up – How should 
we evaluate the images generated from our algorithms/systems? 
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How do we know our algorithm/system is creating and 
improvement between the input and output images, and by how 
much? How can we know one algorithm/system performs better 
than another, and by how much? What should be the quality 
criterion for which the design of our algorithms/systems should be 
optimized?” 

Both subjective and objective IQA are incredibly challenging topics, and selecting the 

appropriate method must be linked with the specific application. 

The human visual system is the final receiver in most image processing 

applications.  This means that subjective analysis is an accurate and reliable solution for 

IQA, but these methods have several limitations.  Subjective assessment is time 

consuming and expensive, especially when analyzing large datasets.  They are inherently 

an offline process that cannot be applied in real time to adjust algorithm parameters.  

Finally, results depend greatly on the physical and mental state of the reviewers, as well 

as how the images are being displayed and in what lighting conditions.   These limitations 

have led to the design of mathematical (objective) methods for quantifying the perceptual 

quality of images. 

Objective IQA has been the subject of much research over the past several 

decades.  Mean Squared Error (MSE) and peak signal-to-noise ratio (PSNR) are two 

metrics frequently used to assess image quality when designing new algorithms, but these 

metrics are known to provide misleading results and lack a correlation to human 

perception.   Metrics based on models of human perception and correlation to subjective 

assessments, including modulation transfer function area (MTFA) and square root 

integral (SQRI), have limitations in appropriately weighting different types of artifacts 

that can be introduced when processing digital imagery. Furthermore, there is direct 

evidence that shows many existing IQA methods demonstrate significant degradation in 

performance when applied to large datasets containing real-world images [187].   

User acceptance is a critical factor for developing a digital vision system for the 

target application, and the quality of the resulting imagery is a significant factor of user 

acceptance, as poor quality imagery may interfere with cognitive processes.  There are 
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many problems with defining objective measures for complex image processing 

applications such as the proposed processing chain, as it is difficult to define an ideal 

composition image that has been subject to multiple algorithms and manipulations with 

vastly differing intents.  The aspects that determine utility to a user are application- and 

context-dependent in a way that numerical representations cannot always predict and 

often do not generalize across all possible ways in which a system can be used.  

Interpretation by the human is the most critical factor; therefore, the IQA performed for 

this research is a subjective analysis conducted by a variety of SMEs.  

Image Results 

This section presents a collection of image results for both the benchmark and 

wavelet-based processing chains from several of the data sets processed during this 

research.  The primary series of results presented here come from Test Scene 1, the most 

frequently processed data set, which was used heavily while implementing the processing 

chains and designing the wavelet-based DRC algorithm.  It contains many characteristics 

that are present in a wide range of the operational conditions an image processing 

subsystem would encounter in the target application, and image frames were collected in 

several different lighting conditions.  A set of three sample input images from this scene, 

captured with different focal depths in “mid” lighting, are shown in Figure 29. 

The output of the benchmark processing chain is shown in Figure 30, and the 

output of the wavelet-based processing chain is shown in Figure 31.  Both of these 

figures had a histogram equalization algorithm applied after the processing was complete 

to enhance the differences in output quality.  Figure 32 shows the original output of the 

wavelet chain without the extra histogram equalization step.  Note that the additional 

histogram equalization processing step exposes gridding artifacts in the images. 

Figure 33 and Figure 34 are included in the series of outputs from the wavelet-

based processing chain to demonstrate the impacts that the parameters of the piecewise 
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linear function of the DRC algorithm has on the final results.  The first figure shows the 

results of improperly setting the α parameters for the input range of coefficient values.  

The second figure shows the results of improperly setting the β parameters that control 

the output range of the coefficient values.  Results from each of the processing chains are 

shown in Figure 35 through Figure 37 for several additional data sets analyzed while 

conducting this research. 

 
(a) 

 
(b) 

 
(c) 

Figure 29: Test Scene 1 – Mid input images with (a) near, (b) mid, and (c) far focus 
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Figure 30: Output from benchmark framework after applying additional histogram equalization 
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Figure 31: Sample output of DWT-based framework after applying additional histogram equalization 
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Figure 32: Sample output of DWT-based framework with no histogram equalization 
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Figure 33: Sample output of DWT-based framework with modified β values in DRC 
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Figure 34: Oversaturated output of DWT-based framework from modified α values in DRC 
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(a) 

 
(b) 

Figure 35: Sample Diorama results from (a) benchmark chain and (b) wavelet chain 
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(a) 

 
(b) 

Figure 36: Sample Dilbert results from (a) benchmark chain and (b) wavelet chain 
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(a) 

 
(b) 

Figure 37: Sample Matrix results from (a) benchmark chain and (b) wavelet chain 
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  Assessment 

The subjective assessment of the image results was performed by fourteen 

participants.  Four subjects had operational experience with digital vision systems and/or 

experience evaluating such systems for the end users. Five subjects were software 

developers with experience implementing and analyzing image processing algorithms in 

a wide range of application contexts.  Five subjects were system engineers with 

experience designing and developing helmet-mounted vision systems for a range of 

operational contexts.  The evaluation was conducted in several smaller groups, as it was 

not possible to coordinate all subjects in a single sitting. 

The assessment was conducted by presenting the results to the subjects in a 

darkened room.  Input images were presented to the subjects first, followed by pair-wise 

comparisons of images produced by the processing chains.  Each pairwise comparison 

comprised a result from the benchmark framework and a result from the wavelet-based 

framework.  All images were displayed on slides with a dark gray background.  This 

study environment was established to provide viewing conditions that were representative 

of the likely operating environment in the target application.  Each slide was presented 

for up to one minute to allow the subjects to select the preferred image result.  Subjects 

were asked to indicate preference based on the amount of visual information that could be 

perceived and which image was more visually pleasing.  They could also indicate that 

neither image result was acceptable.  The reviewers were asked to provide descriptive 

feedback for their selection, such as commentary on detail preservation or enhancement 

and perceived artifacts. 

The subjects reviewed eight data sets that were collected in six separate scenes, 

with Test Scene 1 captured in three different lighting conditions.  The data sets included 

examples for both multi-focal and multi-spectral images.  The subjective evaluation 

included three pairwise comparisons of each of the data sets.  Each comparison presented 

the result of the benchmark processing chain with the results of the wavelet-based 
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processing chain produced using different DRC α and β values.  The percentage of votes 

received by each framework during the subjective assessment and is presented in Table 3. 

Table 3: Votes received by each framework during subjective assessment of results 

Scene Benchmark Chain (%) Wavelet Chain (%) Neither (%) 

Diorama 45.2 54.8 0 

Dilbert 61.9 38.1 0 

Matrix 33.3 66.7 0 

Test Scene 1 – Dark 2.4 7.1 90.5 

Test Scene 1 – Mid 85.7 14.3 0 

Test Scene 1 – Light 66.7 28.5 4.8 

Track 16.7 11.9 71.4 

Lab Scene 57.1 23.8 19.1 

Total 46.1 30.7 23.2 

There were a wide range of comments received during the evaluation.  Select 

comments include: 

• Test Scene 1 – Mid lighting conditions – “This makes the scene look like it was 

shot in daylight”  

• Regarding gridding artifacts that occasionally appeared in images produced by the 

wavelet framework – “…are a bit distracting”  

• Diorama scene from subjects that selected the wavelet framework – “Similar 

information content, but details are slightly sharper”  



www.manaraa.com

86 
 

• Matrix scene from subjects that selected the wavelet framework – “Letters can be 

seen more clearly” 

Neither framework satisfactorily enhanced the images in Test Scene 1 – Dark lighting 

conditions, with both producing images that were quite “washed out.”  The Track scene 

was highly corrupted by noise, which neither framework could successfully reduce.  The 

noise was then propagated through the subsequent processing, producing poor results. 

Surprisingly, there were several comments regarding a preference for “views presented 

by current NVGs” by several experts familiar with those systems.  

Discussion 

Upon first review, the results of the subjective assessment seem to be fairly 

inconclusive, not indicating a strong preference for either framework.  However, if the 

data from Test Scene 1 – Dark lighting conditions and the Track scene (the two scenes 

where both frameworks performed quite poorly) are excluded, the results present a 

different interpretation.  When these results are excluded, the benchmark framework 

received 58.3% of the votes, and the wavelet framework received 37.7% of the votes.  

This is a much more expected result, as the benchmark framework was designed to 

produce high-quality results and demonstrate the tradeoff that may be required between 

image quality and processing speed. 

The image results clearly show that the DRC algorithm controls the resulting 

image quality and that the optimal breakpoints are highly scene dependent.  This was 

further demonstrated during the subjective assessment, where the resulting image from 

the wavelet-based framework that received the most votes in each scene did not exhibit a 

common set of breakpoint values.  α1 values ranged from 128 to 512, α2 from 1024 to 

4096, β1 from 8 to 32, β2 from 32 to 64, and β3 = 256 across the different scenes. 

One alternative that could be used to produce more consistent results is to apply a 

substitute tone mapping algorithm outside of the wavelet-based processing chain. This 
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concept was briefly explored, applying the CLAHE algorithm to the image and using the 

wavelet framework to reduce the bit depth via a simple scaling of the coefficient values. 

The result, shown in Figure 38, does not contain any gridding artifacts and even rivals the 

results of the benchmark framework. This concept should potentially be explored further.  

 

Figure 38: DWT-based framework results with CLAHE applied pre-processing and 
simple scaling of wavelet coefficients for DRC 

It should also be considered that automatic DRC may not necessarily be the “holy grail.”  

It may, alternatively, make sense to provide the user with a predefined set of adjustments 

and the ability to select and switch as necessary. 

Finally, the comments regarding a preference for view presented by current 

NVGs, while somewhat surprising, may expose a limitation in the approach used to 

conduct the review or a perception bias of the subjects.  Due to the way they are designed 

and operate, current night vision devices present imagery that can be described as “green-

scale.”  The images produced by the frameworks were presented as typical grayscale 
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images.  It is not unreasonable to assume that the familiarity with, and unconscious 

anticipation of evaluating, green imagery may have influenced the results and comments. 

Computational Complexity and Power Consumption 

Computational cost is frequently characterized through run-time analysis, a 

theoretical classification that estimates the computation time of an algorithm as a function 

of the input size and often presents the result using “Big O” notation.  For example, if 

both the high-pass and low-pass filters are of constant length, the convolution-based filter 

bank implementation of the DWT grows at a linear rate with respect to the input size, 

which is denoted O(N).  Theoretical notation is important due to the significant impacts 

inefficient algorithms can have on system performance, especially in applications, such 

as the target application of this research, where processing and rendering of the results is 

time-critical.  This notation also addresses a relevant limitation in empirical comparisons, 

where for small input sizes an empirical analysis shows that an algorithm may appear 

superior, but for sufficiently large input sizes it becomes clear that the growth rate 

surpasses that of an alternative algorithm.  However, for the target application, 

information regarding the typical sensor resolutions is available, correlating to anticipated 

input sizes of the data sets.  Consequently, meaningful empirical comparisons can also be 

made. 

The computational complexity for both the wavelet-based and benchmark 

frameworks are briefly characterized in theoretical terms, using Big O notation.  The 

theoretical analysis is essential for providing insights into anticipated run-time for 

applications beyond the scope of this effort that may use different sensors/imaging 

devices with varying resolutions.  An empirical analysis was also performed, analyzing 

image sets captured in laboratory and operationally relevant environments.  The purpose 

of this empirical analysis was to further demonstrate the tradeoffs that are often required 

in designing such digital imaging systems. It is important to note that the empirical 
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analysis was designed and executed in a manner that properly excluded any loading and 

GUI-specific processing tasks from the characterization of the computational cost.  

While it is also well understood that other components, such as the sensor and 

display, contribute to the overall power consumption of a digital vision system, only the 

power consumption associated with processing the imagery is considered here. The 

computation time required to process the imagery is used to characterize the approximate 

power consumption for both the wavelet-based and benchmark frameworks.  The 

computations for power consumption are based directly on instructional operations and 

take into account energy per instruction (in picoJoules/operation (pj/op)), clock speed (in 

Hertz (Hz)), and frame rate (in Hz).   The power analysis first characterizes the energy 

usage for the platform employed during this research, a general-purpose computing 

platform, and then is extrapolated to a specific embedded processer that is used for the 

target application. 

Computational Complexity Analysis 

A theoretical analysis provides insights into the expected execution time for 

applications beyond the scope of this effort that may utilize different sensors/imaging 

devices with resolutions that from those used for the target application.  This analysis 

provides an upper bound on how the processing chain execution time will grow as the 

size of the input images grow.   

The theoretical analysis of the wavelet processing chain provides the following 

insights: 

• The DWT can be implemented for image processing using the 1D DWT in a 

separable fashion.  At each level of decomposition, or reconstruction for the 

inverse, the transform is applied first to the rows and then to the columns.  Thus, 

for an n x m image, the computational complexity of the 2D DWT is O(nm).  The 

overall computational complexity contribution for performing the DWT on i input 
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images will be O(inm).  Since only a single inverse is performed at the conclusion 

of the processing chain, there will be an additional O(nm).  

• The soft thresholding operator is a point-processing operator with complexity 

O(1).  Thus, for a 1D signal of length l, the computational complexity is O(l), and 

for an n x m image the computational complexity is O(nm).  The overall 

computational complexity contribution for i input images will be O(inm). 

• Using proper indexing, the fusion algorithm can be computed in four passes 

through each image.  The quality values can be aggregated down through the 

resolution levels from highest to lowest in a single pass through the image. 

Normalizing the values requires a second pass through the image, and propagating 

the quality values back up through the resolution levels can be performed in a 

third pass.  This is multiplied by the number of input images, i. A final pass is 

used to find the maximum quality value from the input images and select the 

coefficient from the image with the highest quality value.  Thus, for i input 

images of resolution n x m, the overall computational complexity is O(c1nm), 

where c1 is a scalar value. 

• The dynamic range compression algorithm can be computed in two passes 

through the image.  Using proper indexing, the maximum value of the 

approximation coefficients and detail coefficients can be computed in one pass 

through the image. Again using proper indexing, the approximation coefficients 

and detail coefficients can be modified using the piecewise linear function and 

scalar value through a second pass through the image.  Thus, for an n x m image 

the computational complexity is O(c2nm), where c2 is a scalar value.  

In Big O notation, constant factors and lower terms are dropped.  Therefore, the overall 

computational complexity of the wavelet-based processing chain grows in direct 

proportion as the dimensions of the image grow and can be stated as O(nm). 
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The theoretical analysis of the benchmark processing chain provides the following 

insights: 

• The median filter algorithm is known to have high computational cost dominated 

by the calculation of the median, and more specifically, sorting the pixels in the 

filter window.  The worst-case complexity for a sorting algorithm is O(w2), where 

w is the number of pixels in the window that must be sorted.  The average case, 

using more efficient sorting algorithms, is O(wlogw).  Thus, for an n x m image 

the computational complexity is O(wlogw·nm), and this algorithm is applied to 

each of the i input images. 

• The fusion algorithm is the same algorithm utilized in the processing chain.  

Therefore the contribution to the computational complexity includes the O(inm) 

for the DWT, O(nm) for the inverse DWT, and O(c1nm) for the fusion process 

described above.   

• The Drago implementation scheme is computed in multiple passes through the 

image.  First, the minimum and maximum values are identified.  The next pass 

applies the logarithmic tone mapping and is followed by a third pass that applies 

the gamma correction.  Thus, for an n x m image the overall computational 

complexity is O(c1nm), where c1 is a scalar value. 

The computational cost is dominated by the median filter algorithm.  The overall 

computational complexity of the benchmark processing chain can be stated as 

O(wlogw·nm) + O(nm).  Because the window size in the median filter is not constant, and 

the number of times each window size is applied varies with the size of the image, that 

term cannot be simply considered a scalar.  

The empirical analysis was conducted by performing 500 executions of both the 

DWT-based framework and the benchmark framework for each of the scenes that were 

processed.  The software was modified to enable repeated execution of the processing 

chains without having to reload the source images.  The total processing time, as well as 
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the processing time for each subroutine, was collected after each execution of each 

framework.  An example plot of the execution time data produced from analyzing a 

single data set with both frameworks is shown in Figure 39. 

 

Figure 39: Execution time in milliseconds for DWT-based and benchmark frameworks 

For the example plotted above, the average processing time was 83.86 

milliseconds (ms) for the wavelet-based processing chain and 786.24 ms for the 

benchmark processing chain.  Table 4 and Table 5 provide the breakdown of these 

processing times by subroutine, as well as an extrapolation of the processing time to 

execute the frameworks on the embedded processor.   
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Table 4: Average processing time of the DWT-based framework 

Algorithm General Purpose Processor  
Execution Time (ms) 

Embedded Processor  
Execution Time (ms) 

DWT 33.71 29.93 

Soft Threshold 16.47 14.62 

Fusion 19.41 17.23 

DRC 1.98 1.76 

I-DWT 12.29 10.91 

Total 83.86 74.45 

Table 5: Average processing time of the benchmark framework 

Algorithm General Purpose Processor  
Execution Time (ms) 

Embedded Processor  
Execution Time (ms) 

Median Filter 490.33 435.35 

DWT 33.71 29.93 

Fusion 19.41 17.23 

I-DWT 12.29 10.91 

Drago DRC 230.50 204.65 

Total 786.24 698.07 

The extrapolation function was generated from a detailed analysis of an implementation 

of the DWT using the LeGall 5/3 wavelet in both environments, which was applied to 

images of varying resolutions.  The differences in processor capabilities, and the ability 
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to parallelize with the embedded processor, are factored into the calculation.  The results 

demonstrate a 9.38 times improvement when comparing the two processing chains.   

Power Consumption Analysis 

As previously stated, it is well understood that hardware components, such as the 

sensors and display in the target application, contribute substantially to the overall power 

consumption of an image processing system.  The results presented here are derived from 

the average execution time for the processing frameworks and factor in the instructional 

operations, energy per instruction (pj/op), clock speed (Hz), and frame rate (Hz).  To 

calculate power consumption for the general-purpose computing platform used in this 

analysis, the execution time is first converted to instructional operations.  Once the 

number of operations has been calculated, the following overall power consumption is 

computed, in picoWatts (pW), using the equation 

 𝑠𝑠𝑙𝑙𝑤𝑤𝑒𝑒𝑒𝑒 = 𝑓𝑓𝑟𝑟𝑎𝑎𝑚𝑚𝑚𝑚 𝑟𝑟𝑎𝑎𝑡𝑡𝑚𝑚 × 𝑚𝑚𝑛𝑛𝑚𝑚𝑟𝑟𝑖𝑖𝑦𝑦 𝑝𝑝𝑚𝑚𝑟𝑟 𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑟𝑟𝑖𝑖𝑐𝑐𝑡𝑡𝑖𝑖𝑙𝑙𝑛𝑛×𝑙𝑙𝑝𝑝𝑖𝑖
𝑐𝑐𝑙𝑙𝑙𝑙𝑐𝑐𝑘𝑘 𝑖𝑖𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

  Eq 40 

To extrapolate the power consumption calculation to the embedded processor, the 

execution time for each algorithm on the general-purpose platform is mapped to an 

execution time for the embedded processor.  As previously mentioned, this mapping was 

generated from a detailed analysis of an existing implementation of the DWT using the 

LeGall 5/3 wavelet in both environments, which was applied to images of varying 

resolutions.  The differences in clock speed and ability to highly parallelize with the 

embedded processor are factored into the calculation.  The newly calculated execution 

time is again converted to instructional operation and used in Equation 40 to compute the 

power consumption. The specific energy and clock speed information is not provided for 

the embedded processor at this time, as certain characteristics of the device are 

considered proprietary.  The power consumption of the DWT framework and benchmark 

framework are provided in Table 6 and Table 7, respectively.   
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Table 6: Power consumption of the DWT-based framework 

Algorithm Execution Time (ms) General-Purpose Power 
Consumption (pW) 

Embedded Processor 
Power Consumption 

(pW) 

DWT 33.71 2,537.44 7.30 

Soft Threshold 16.47 1,239.74 3.57 

Fusion 19.41 1,461.04 4.20 

DRC 1.98 149.04 0.43 

I-DWT 12.29 925.10 2.66 

Total 83.86 6,312.36 18.16 

Table 7: Power consumption of the benchmark framework 

Algorithm Execution Time (ms) General-Purpose Power 
Consumption (pW) 

Embedded Processor 
Power Consumption 

(pW) 

Median Filter 490.33 36,908.48 106.14 

DWT 33.71 2,537.44 7.30 

Fusion 19.41 1,461.04 4.20 

I-DWT 12.29 925.10 2.66 

Drago DRC 230.50 17,350.36 49.90 

Total 786.24 59,182.42 170.20 

The tables include the calculated values for both the general-purpose computing 

platform and the embedded processor.  It should be noted that characterizing only the 
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power consumption associated with processing the images means the results are 

dependent upon the image resolution.  The data presented in the tables is the average 

execution time for imagery that is representative of the data collected by sensors utilized 

for a system intended for the target application. 

As shown in the tables, the existing implementations of the processing 

frameworks produced approximate power consumption of 59.182.42 pW for the 

benchmark chain and 6,312.36 pW for the DWT-based chain on the general-purpose 

computing platform.  The mapping to the embedded processor calculates 170.20 pW for 

the benchmark chain and 18.16 pW for the DWT-based chain.  This demonstrates a 9.37 

times reduction in power consumption when comparing the two processing methods.  

The power consumption calculations also demonstrate that the use of the embedded 

processor would result in an approximately 347.60 times reduction from the general-

purpose processing platform for the DWT-based chain and 347.72 times reduction for the 

benchmark chain. 

Discussion 

Processing times that result in latencies perceptible to the human visual system 

would render the system unusable for the target application in helmet-mounted vision 

systems.  It could also have critical effects in other applications, such as remote surgical 

procedures.  Unfortunately, what constitutes “human perceptible” latency is not a simple 

thing to define, as it can be highly dependent on the application context and features of 

the display device, including resolution and FoV.  This is noticeably demonstrated by the 

range of “acceptable” latencies documented in the following examples: 

• 100 ms was established as an acceptable threshold for latency in human-computer 

interaction over four decades ago [189] 
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• The Federal Aviation Administration (FAA) requirements for Level D 

certification of flight simulators allow 120 ms latency in visual systems for fixed-

wing platforms and 150 ms latency for rotary-wing platforms [190] 

• A study on synthetic and enhanced vision systems for rotary-wing platforms 

deemed 150 ms HMD latency to be unacceptable, 100 ms as marginal, and 50 ms 

as preferred [191] 

• A NASA study on latency in visionic systems concluded that acceptable latencies 

should be as low as 20 ms [192] 

• An evaluation of performance in gaming environments showed that latencies of 

approximately 40 ms can have negative impacts on tasks such as tracking and 

shooting accuracy [193] 

This range of thresholds makes characterizing the acceptability of the empirical 

computational complexity analysis quite challenging.   

The average execution time of the benchmark framework clearly exceeds all 

documented thresholds of latencies that are perceivable by the human visual system.  The 

average execution time of the DWT-based framework is not nearly as straightforward.   

The current results are below the initially established 100 ms threshold but do not meet 

some of the more stringent metrics identified in more recent literature.  It is important to 

recall, however, that the results of the empirical analysis were obtained from the 

algorithms executing on a general-purpose CPU, as opposed to a specialized embedded 

processor or GPU.  When considering techniques that can further reduce execution time, 

such as parallel processing, hardware acceleration, and the ability to process the image as 

lines are being acquired by the sensors, it is not a significant conceptual leap to conclude 

that a customized processor and implementation should result in non-perceptible 

latencies.  This is especially true when taking into account that Moore’s Law continues to 

hold true, and the capabilities of processors continue to increase at a rapid pace. 
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The results of the power consumption analysis are only relevant in limited 

application contexts.  For many applications, such as those in medical fields or when the 

processing sub-system is able to connect to (or is part of) a platform like an aircraft, there 

are few limitations that need to be placed on the power consumption.  However, for the 

target application, the system is “untethered,” and the batteries required to power the 

system are carried by the user.  The power consumption demonstrated by the DWT-based 

framework, when deployed on the target hardware, equates to the system running 

approximately four to six hours on four standard batteries, including the power required 

for the sensors and displays. 

The results obtained from testing this hypothesis are especially noteworthy 

considering that the subjective analysis of the resulting images indicated a preference for 

images produced by the benchmark framework, and that the feedback from the SMEs 

with operational experience indicated an overall preference for the views provided by 

their existing analog NVGs.  The results reinforce that there may be a significant tradeoff 

between producing high-quality images and requirements for low-latency/low-power 

processing to consider when designing and implementing processing frameworks such as 

the DWT-based chain presented in this work.  When considering the cost of existing 

equipment (such as current NVGs), or that such an image processing sub-system for a 

given application may not exist, even the less-preferred results may justify the tradeoff. 

Algorithm Selection and Ordering 

A processing chain of this nature is useful for many applications; however, it 

would be difficult to design a “one size fits all” solution.  Certain applications may 

require a large number of algorithms to achieve the desired results, while others may only 

need to utilize a smaller subset.   Some applications may produce better results if the 

algorithms are performed in a different order than that proposed for the intended 

application.  
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Therefore, the final goal of this research is to provide an end user the freedom to 

modify the wavelet processing chain based on the needs of the target application.  The 

critically sampled wavelet utilized in the processing chain is highly susceptible to 

aliasing, and the modifications each algorithm makes to the coefficients can have 

significant impacts on the resulting imagery. Thus, tailoring the framework for broader 

applicability requires a systematic assessment of algorithm selection and ordering in the 

processing chain.  The result of this assessment is a set of guidelines that should be 

considered when selecting and ordering algorithms in the processing chain for a given 

application.  The guidelines present the tradeoffs in terms of image quality and, when 

applicable, computational cost and power consumption.  It is important to note that not all 

applications have the same strict requirements for real-time processing and minimizing 

power consumption.  

Fuse Early – The output in terms of computation cost and power consumption 

will largely be driven by the algorithms that are applied prior to fusion in the processing 

chain.  The intended application and many other potential applications operate on 

multiple sources of imagery that are combined into a single output, or a reduced number 

of outputs, at some point in the process.   Any algorithm applied prior to fusion in the 

processing chain will likely be repeated on every input image, and the computational cost 

and power consumption associated with applying that algorithm to a single image is 

increased by a factor of the number of input images. 

Reduce Noise Early – The image data captured in most, if not all, application 

contexts for such processing chains will be corrupted by noise.  Therefore, noise 

reduction algorithms are unlikely to ever be tailored out of a processing chain.   In the 

current design, noise reduction is applied individually to each input source prior to 

performing image fusion.  Some noise reduction algorithms can be computationally 

expensive (e.g., median filtering), and execution time could be significantly reduced by 

performing noise reduction after the input images have been fused.  While this approach 
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would follow the initial guideline of fusing early, many fusion algorithms can propagate, 

and in some cases even enhance, the noise in an image.  The fusion approach utilized in 

the processing chains presented in this work has a decreased probability of propagating 

noise, as the quality measure computation would likely assign a smaller quality value to a 

coefficient associated with noise than a coefficient associated with a feature.  However, 

this guideline should be observed in processing chains that use alternative fusion 

methods. 

Image Scale Carefully – Algorithms that inherently contain steps that perform 

image scaling, or are specifically designed for image scaling, should be considered 

carefully.   Image scaling is a key step in many algorithms such as super-resolution and 

panoramic stitching.  It is also a necessary step in applications, such as the target 

application, where the input images are not inherently the same size and need to be 

combined (or fused) in some manner. Higher resolution may be desirable to support 

preservation of detail in subsequent processing steps or to assist operational tasks such as 

detection, recognition, and identification and there is a significant impact on 

computational complexity and power consumption.  For example, increased resolution 

means a greater number of pixels associated with the image features, which may lead to 

better fusion results. However, applying image scaling to each image prior to fusion will 

come at a significant computational expense.  Both the theoretical and empirical analyses 

discuss the dependency of the execution time of the frameworks on the size of the input 

image (image resolution), hence the need to carefully consider how and where these types 

of algorithms are incorporated into the processing chain.   
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CHAPTER 6 SUMMARY AND FUTURE WORK 

Summary 

This dissertation presented the design and preliminary implementation of an 

image processing sub-system that minimizes computational complexity and power 

consumption by eliminating repeated transformations between processing domains.  

Specifically, this processing chain utilized the LeGall 5/3 wavelet as the basis for 

applying multiple algorithms within a single domain.  The key factor in designing the 

processing chain was to establish an understanding of how the wavelet coefficients 

control characteristics of an image, such as dynamic range, and the sensitivity of the 

wavelet reconstruction to aliasing.  This understanding can be used to extend the 

processing chain to include additional algorithms. 

The wavelet processing chain was compared to a benchmark processing chain 

comprised of algorithms intended to produce high-quality image results.  This 

comparison characterized the results in terms of image quality, computational costs, and 

power consumption.  Subjective quality assessment concluded that additional work is 

required to improve the imagery produced by the wavelet-based framework.  Analysis of 

computational cost and power consumption support the hypothesis that the wavelet 

framework can enable low-latency, low-power applications, demonstrating a nearly a 9.4 

times reduction in execution time and power consumption.  However, data sets obtained 

from additional sensor systems of varying resolutions should be processed before 

stronger claims of validation are made.  

Finally, a set of guidelines was provided to support tailoring the processing 

framework for broader applicability.  These guidelines should be considered when 

selecting and ordering algorithms in the processing chain.  They leverage the 

understanding established during the design phase of how algorithms influence the image 
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characteristics, and they seek to provide guidance on impacts to image quality, execution 

time, and power consumption.    

Future Work 

There is much additional research that can be performed to further extend the 

principles demonstrated by this work.  Extensions to the processing framework can be 

made through further refinement of the algorithms, integration of additional algorithms, 

and an analysis of alternative wavelets.  Additionally, exploration of hardware solutions 

to accelerate the algorithms and IQA techniques for these types of processing chains 

would be significant contributions to the field.  Further application-specific research 

includes the insertion of symbology into the final image and an assessment of artifacts 

that may be introduced by platform characteristics.  

The results clearly show that the breakpoints of the piecewise linear function 

applied to the approximation coefficients during DRC have a significant impact on the 

final image quality.  Appropriate sets of breakpoints can be identified to produce quality 

image results, but it is unlikely that values for one environmental context will produce 

quality image results in all contexts.  The optimal set of breakpoints is scene dependent.  

This property was empirically observed when applying the framework across sets of 

source imagery, where breakpoints had to be modified when processing different sets to 

maintain image quality.  Thus, a final implementation of such an image processing sub-

system could include a dynamic calculation and optimization of the parameters for the 

piecewise linear function.  However, given the complexity of this optimization problem, 

it was not addressed in this work.  As previously stated in the discussion of the image 

results, an additional alternative is to use manually selectable settings and not perform 

automatic DRC. 

The critically sampled real-valued wavelet analysis filter bank can be 

implemented incredibly efficiently but produces highly aliased coefficients.  The 
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synthesis filter bank is designed for perfect reconstruction; however, imperfect 

cancellation occurs when the coefficients are processed in any way, manifesting as 

ringing or other artifacts around image edges.  This holds true for the LeGall 5/3 wavelet 

used in this implementation and is further exacerbated by the short length of the analysis 

and synthesis filter banks.  This wavelet is also significantly shift variant, and as the 

scene under view shifts, a dramatically different set of coefficients is computed.  These 

limitations can make incorporating additional algorithms into the processing chain 

difficult, as further manipulation of the wavelet coefficients can easily introduce artifacts 

into the output images. 

An alternative approach that may address these effects would be developing the 

framework utilizing an alternative wavelet, either real-valued or complex. For example, 

the DT-CWT supports near state-of-the-art algorithms for most of the candidate 

processing tasks, and a brief investigation into utilizing it for the framework is 

summarized in Appendix B.  The DT-CWT framework generated visually appealing 

image results; however, the current approaches for implementing the DT-CWT drive 

computational complexity to levels that significantly exceed those of even the benchmark 

processing chain.  In order to make it a reality on practical fixed-point image processing 

hardware, a transform with wavelet and scaling filters that take only integer values would 

need to be designed.  Additionally, the redundant nature of the transforms will also drive 

increased memory requirements that would be difficult to support for the intended 

application to helmet-mounted vision systems.  

The focus of this work was on developing a low-latency, low-power software 

solution.  As discussed in the results section, the computational cost and power 

consumption could be further reduced by coupling the software with a custom hardware 

solution, such as a specialized processor.  This concept is becoming more popular, which 

can be clearly seen in the emerging class of microprocessors, called Vision Processing 

Units (VPUs), which are specially designed to accelerate machine vision algorithms.  
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Examples include the Movidius Myriad 2 family of VPUs designed for machine vision, 

machine learning, and augmented/virtual reality applications [194] and the NXP 

Semiconductors S32V vision processor for automotive vision systems [195].   

Developing IQA methods has been an active research topic for several decades, 

but further research is required.  The limitations in objective quality assessment 

techniques were discussed previously as part of the research design.  There is no single 

existing IQA technique that can properly assess the results of processing chains such as 

those presented in this work.  The design of such a metric would be a significant 

contribution to the field of image processing, especially as applications of image 

processing systems continue to expand.  

Most fielded helmet-mounted vision systems include 2D or 3D conformal line 

drawn symbology that provides enhanced situational awareness.  Injecting the symbology 

into the final image results could be treated as a fusion problem; however, this approach 

would likely degrade the line quality of the symbology.  Identifying an appropriate 

method and position to insert symbology into the processing chain would be a valuable 

application-specific extension of this work. The most likely approach to provide 

symbology, however, would be through a merge plane as a simple overlay that could be 

switched on and off by the user. 

In certain operational platforms, specific characteristics of the platform itself may 

introduce artifacts into the imagery.  For example, multi-function displays in many 

airborne platforms are line scanned displays that, when imaged by a digital sensor, are 

likely to create unacceptable artifacts in the resulting imagery.  Identifying these 

platform-specific issues and developing mitigation strategies within the processing chain 

itself will be critical to fielding digital helmet-mounted vision systems.   
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APPENDIX A SUPPLEMENTARY IMAGE DATA 

Multi-Focus Fusion Results 

(a) (b) 

(c) (d) 

Figure A.1: Example (a) far focus, (b) mid focus, (c) and near focus inputs with (d) fused 
results 
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Comparison of Adaptive Scaling of High-Frequency Sub-bands 

 
(a) 

 
(b) 

Figure A.2: DRC with (a) a single scalar and (b) adaptive scaling of detail coefficients 
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Images Used in DRC SME Evaluation 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure A.3: Dilbert (a) HDR Source Image, (b) Bilateral, (c) Drago, (d) Gradient, (e) 
Histogram Equalization, and (f) Biologically Inspired DRC Results 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure A.4: Diorama (a) HDR Source Image, (b) Bilateral, (c) Drago, (d) Gradient, (e) 
Histogram Equalization, and (f) Biologically Inspired DRC Results 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure A.5: Matrix (a) HDR Source Image, (b) Bilateral, (c) Drago, (d) Gradient, (e) 
Histogram Equalization, and (f) Biologically Inspired DRC Results 
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APPENDIX B DT-CWT WAVELET FRAMEWORK 

A brief investigation was conducted into utilizing the DT-CWT in place of the 

LeGall 5/3 wavelet.  This approach has six angularly selective sub-bands, shown in 

Figure B.1, and a spectrum structure that reduces the frequency aliasing and other 

artifacts introduced by decimation, which were observed in early implementations of the 

original processing chain. 

   

(a) (b) (c) 

 
(d) 

Figure B.1: DT-CWT (a) HL Orientations, (b) HH Orientations, (c) LH Orientations, (d) 
LL approximation coefficients 
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Similar to the DWT framework, the results produced by the DT-CWT framework are 

highly influence by the DRC algorithm.  This can clearly be seen from the sample image 

results provided in Figure B.2.   

(a) (b) 

Figure B.2: Sample image results after applying the DT-CWT processing chain 

Subjective assessment of the image results from this processing chain elicited a range of 

feedback, including highly positive feedback on the results in Figure B.2b.  Despite this 

positive feedback, there is significant additional work that would be required to reduce 

the execution time to acceptable levels.  The average execution time observed during this 

preliminary assessment was approximately 3.5 seconds, nearly 5 times the execution time 

of the benchmark framework and 42 times the execution time of the DWT framework 

based on the LeGall wavelet. 
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